Effect of time-variant rainfall on landslide susceptibility: A case study in Quang Ngai Province, Vietnam

Viet Long Doan, Ba-Quang-Vinh Nguyen, Chi Cong Nguyen, Cuong Tien Nguyen
Author affiliations


  • Viet Long Doan The University of Danang, University of Science and Technology, Danang, Vietnam
  • Ba-Quang-Vinh Nguyen 1-School of Civil Engineering and Management, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam; 2-Vietnam National University, Ho Chi Minh City, Vietnam
  • Chi Cong Nguyen The University of Danang, University of Science and Technology, Danang, Vietnam
  • Cuong Tien Nguyen 1-Faculty of Vehicle and Energy Engineering, Phenikaa University, Hanoi 12116, Vietnam, Phenikaa; 2-Research and Technology Institute (PRATI), No. 167 Hoang Ngan, Cau Giay, Hanoi 11313, Vietnam




Time-variant rainfall, landslide susceptibility, XGBoost, Boruta, ROC


Rainfall is a triggering factor that causes landslides, especially in the regions where landslides often occur after consecutive days of heavy rainfall. Most previous studies only used a specific rainfall map for landslide susceptibility assessment. However, this approach was unreasonable because rainfall is a time-variant data. This study uses the time series data of 1-day, 3-day, 5-day, and 7-day maximum precipitation from 2016 to 2020 in the mountainous area of Quang Ngai province for landslide susceptibility assessment. These data and other influencing factors were used to develop landslide spatial prediction models using the Extreme Gradient Boosting method. The prediction model's performance was assessed using the statistical index and receiver operating characteristic curve methods. The testing results of 4 cases using consecutive days of maximum rainfall data demonstrated excellent performance. Of these, the model with a 3-day maximum rainfall with ACC = 0.813, kappa = 0.625, SST = 0.872, SPF = 0.754, and
AUC = 0.895 had the best performance. In addition, these results were compared to the previous approach that used average annual rainfall. The validation result indicates that the cases using a time series of maximum precipitation (with AUC of approximately 0.9) outperform the cases with average annual rainfall (AUC=0.838). Finally, the model using 3-day maximum rainfall is then used for landslide spatial prediction mapping. These maps provide spatial prediction and assess landslide susceptibility corresponding to rainfall frequencies.


Download data is not yet available.


Adnan Ikram R.M., Khan I., Moayedi H., Ahmadi Dehrashid A., Elkhrachy I., Nguyen Le B., 2023. Novel evolutionary-optimized neural network for predicting landslide susceptibility. Environment, Development and Sustainability, 1-33. https://doi.org/10.1007/s10668-023-03356-0. https://doi.org/10.1007/s10668-023-03356-0.">

Basofi A., Fariza A., Ahsan A.S., Kamal I.M., 2015. A comparison between natural and Head/tail breaks in LSI (Landslide Susceptibility Index) classification for landslide susceptibility mapping: A case study in Ponorogo, East Java, Indonesia.

International Conference on Science in Information Technology (ICSITech), 337342. https://doi.org/10.1109/icsitech.2015.7407828. https://doi.org/10.1109/icsitech.2015.7407828.">

Bui D.T., Pradhan B., Lofman O., Revhaug I., Dick O.B., 2012. Application of support vector machines in landslide susceptibility assessment for the Hoa Binh province (Vietnam) with kernel functions analysis. Proceedings of the sixth biannial meeting of the International Environmental Modelling and Software Society. Germany July 1-5, 2012, 382-089. Doi: 10.13140/RG.2.1.3041.4889.

Bui D.T., Pradhan B., Revhaug I., Tran C.T., 2014. A comparative assessment between the application of fuzzy unordered rules induction algorithm and J48 decision tree models in spatial prediction of shallow landslides at Lang Son City, Vietnam. In Remote sensing applications in environmental research. Springer, 87-111. https://doi.org/10.1007/978-3-319-05906-8_6. https://doi.org/10.1007/978-3-319-05906-8_6.">

Can R., Kocaman S., Gokceoglu C., 2021. A comprehensive assessment of XGBoost algorithm for landslide susceptibility mapping in the upper basin of Ataturk dam, Turkey. Applied Sciences, 11(11), 4993. https://doi.org/10.3390/app11114993. https://doi.org/10.3390/app11114993.">

Chen T., Guestrin C., 2016. Xgboost: A scalable tree boosting system. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785. https://doi.org/10.1145/2939672.2939785.">

Cong N.C., Binh N.Q., Phuoc V.N.D., 2019. Landslide Susceptibility Mapping by Combining the Analytical Hierarchy Process and Regional Frequency Analysis Methods: A Case Study for Quangngai Province (Vietnam). International Conference on Asian and Pacific Coasts, 1327-1334. https://doi.org/10.1007/978-981-15-0291-0_180. https://doi.org/10.1007/978-981-15-0291-0_180.">

Dahal R.K., Hasegawa S., Nonomura A., Yamanaka M., Masuda T., Nishino K., 2008. GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environmental Geology, 54(2), 311-324. https://doi.org/10.1007/s00254-007-0818-3. https://doi.org/10.1007/s00254-007-0818-3.">

Dao M.D., Vu C.M., Hoang H.Y., Nguyen T.L., Do M.D., 2023. Analysis of landslide kinematics integrating weather and geotechnical monitoring data at Tan Son slow moving landslide in Ha Giang province. Vietnam J. Earth Sci., 45(2), 131-146.. https://doi.org/10.15625/2615-9783/18204. https://doi.org/10.15625/2615-9783/18204.">

Dou J., Yunus A.P., Bui D.T., Merghadi A., Sahana M., Zhu Z., Chen C.-W., Khosravi K., Yang Y., Pham B.T., 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment, 662, 332-346. https://doi.org/10.1016/j.scitotenv.2019.01.221. https://doi.org/10.1016/j.scitotenv.2019.01.221.">

Frattini P., Crosta G., Carrara A., 2010. Techniques for evaluating the performance of landslide susceptibility models. Engineering Geology, 111(1-4), 62-72. https://doi.org/10.1016/j.enggeo.2009.12.004. https://doi.org/10.1016/j.enggeo.2009.12.004.">

Guzzetti F., Reichenbach P., Cardinali M., Galli M., Ardizzone F., 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272-299. https://doi.org/10.1016/j.geomorph.2005.06.002. https://doi.org/10.1016/j.geomorph.2005.06.002.">

Hoang-Cong H., Ngo-Duc T., Nguyen-Thi T., Trinh-Tuan L., Xiang C.J., Tangang F., Jerasorn S., Phan-Van T., 2022. A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall. Vietnam J. Earth Sci., 44(1), 92-108. https://doi.org/10.15625/2615-9783/16942. https://doi.org/10.15625/2615-9783/16942.">

Jones C.M., Athanasiou T., 2005. Summary receiver operating characteristic curve analysis techniques in the evaluation of diagnostic tests. The Annals of Thoracic Surgery, 79(1), 16-20. https://doi.org/10.1016/j.athoracsur.2004.09.040. https://doi.org/10.1016/j.athoracsur.2004.09.040.">

Kantardzic M., 2011. Data mining: concepts, models, methods, and algorithms. John Wiley & Sons, 126-132. https://doi.org/10.1002/9781119516057.ch1. https://doi.org/10.1002/9781119516057.ch1.">

Kursa M.B., Rudnicki W.R., 2010. Feature selection with the Boruta package. Journal of Statistical Software, 36, 1-13. https://doi.org/10.18637/jss.v036.i11. https://doi.org/10.18637/jss.v036.i11.">

Le Minh N., Truyen P.T., Van Phong T., Jaafari A., Amiri M., Van Duong N., Van Bien N., Duc D.M., Prakash I., Pham B.T., 2023. Ensemble models based on radial basis function network for landslide susceptibility mapping. Environmental Science and Pollution Research, 30(44), 99380-99398. https://doi.org/10.1007/s11356-023-29378-9. https://doi.org/10.1007/s11356-023-29378-9.">

Liu S., Wang L., Zhang W., He Y., Pijush S., 2023. A comprehensive review of machine learning‐based methods in landslide susceptibility mapping. Geological Journal, 58(6), 2283-2301. https://doi.org/10.1002/gj.4666. https://doi.org/10.1002/gj.4666.">

Moayedi H., Dehrashid A.A., 2023. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping. Environmental Science and Pollution Research, 1-26. https://doi.org/10.1007/s11356-023-28133-4. https://doi.org/10.1007/s11356-023-28133-4.">

Ngo-Duc T., 2023. Rainfall extremes in Northern Vietnam: a comprehensive analysis of patterns and trends. Vietnam J. Earth Sci., 45(2), 183-198. https://doi.org/10.15625/2615-9783/18284. https://doi.org/10.15625/2615-9783/18284.">

Pham Binh T., Prakash I., Khosravi K., Chapi K., Trinh P.T., Ngo T.Q., Hosseini S.V, Bui D.T., 2019. A comparison of Support Vector Machines and Bayesian algorithms for landslide susceptibility modelling. Geocarto International, 34(13), 1385-1407. https://doi.org/10.1080/10106049.2018.1489422. https://doi.org/10.1080/10106049.2018.1489422.">

Pham Binh Thai, Bui D.T., Prakash I., Dholakia M.B., 2017. Hybrid integration of Multilayer Perceptron Neural Networks and machine learning ensembles for landslide susceptibility assessment at Himalayan area (India) using GIS. Catena, 149, 52-63. https://doi.org/10.1016/j.catena.2016.09.007. https://doi.org/10.1016/j.catena.2016.09.007.">

Pham Binh Thai, Khosravi K., Prakash I., 2017. Application and comparison of decision tree-based machine learning methods in landside susceptibility assessment at Pauri Garhwal Area, Uttarakhand, India. Environmental Processes, 4(3), 711-730. https://doi.org/10.1007/s40710-017-0248-5. https://doi.org/10.1007/s40710-017-0248-5.">

Pham Binh Thai, Prakash I., Chen W., Ly H.-B., Ho L.S., Omidvar E., Tran V.P., Bui D.T., 2019. A novel intelligence approach of a sequential minimal optimization-based support vector machine for landslide susceptibility mapping. Sustainability, 11(22), 6323. https://doi.org/10.3390/su11226323. https://doi.org/10.3390/su11226323.">

Pham Binh Thai, Tien Bui D., Indra P., Dholakia M., 2015. Landslide susceptibility assessment at a part of Uttarakhand Himalaya, India using GIS-based statistical approach of frequency ratio method. Int J Eng Res Technol, 4(11), 338-344. https://doi.org/10.17577/ijertv4is110285. https://doi.org/10.17577/ijertv4is110285.">

Pham V.T., Le H.L., Tran T.N., Nguyen Q.P., Phan T.T., Dinh T.Q., Dao M.D., Nguyen C.L., Nguyen H.C., 2023. Mechanism and numerical simulation of a rapid deep-seated landslide in Van Hoi reservoir, Vietnam. Vietnam J. Earth Sci., 45(3), 357-373. https://doi.org/10.15625/2615-9783/18539. https://doi.org/10.15625/2615-9783/18539.">

Phuoc V.N.D., Binh N.Q., Hung P.D., Long D.V., Cong N.C., 2019. Studies on the causes of landslides for mountainous regions in central region of Vietnam. The University of Danang, Journal of Science and Technology, 17, 29-32. https://doi.org/10.31130/jst-ud2019-170e. https://doi.org/10.31130/jst-ud2019-170e.">

Prasad P., Loveson V.J., Das B., Kotha M., 2022. Novel ensemble machine learning models in flood susceptibility mapping. Geocarto International, 37(16), 4571-4593. https://doi.org/10.1080/10106049.2021.1892209. https://doi.org/10.1080/10106049.2021.1892209.">

Rabby Y.W., Hossain M.B., Abedin J., 2022. Landslide susceptibility mapping in three Upazilas of Rangamati hill district Bangladesh: application and comparison of GIS-based machine learning methods. Geocarto International, 37(12), 3371-3396. https://doi.org/10.1080/10106049.2020.1864026. https://doi.org/10.1080/10106049.2020.1864026.">

Reichenbach P., Rossi M., Malamud B.D., Mihir M., Guzzetti F., 2018. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180, 60-91. https://doi.org/10.1016/j.earscirev.2018.03.001. https://doi.org/10.1016/j.earscirev.2018.03.001.">

Sahin E.K., 2020. Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest. SN Applied Sciences, 2(7), 1308. https://doi.org/10.1007/s42452-020-3060-1. https://doi.org/10.1007/s42452-020-3060-1.">

Su C., Wang L., Wang X., Huang Z., Zhang X., 2015. Mapping of rainfall-induced landslide susceptibility in Wencheng, China, using support vector machine. Natural Hazards, 76, 1759-1779. https://doi.org/10.1007/s11069-014-1562-0. https://doi.org/10.1007/s11069-014-1562-0.">

The Vietnam Institutes of Geosciences and Mineral Resources, 2020. Investigate, evaluate and landslide zonation in the mountainous region of Vietnam.

Tran T., Neefjes K., 2015. Viet Nam Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX Vietnam).

Varnes D.J., 1984. Landslide hazard zonation: a review of principles and practice. Commission on landslides of the IAEG. Natural Hazards, 3, 61p.

Zhang W., Li H., Han L., Chen L., Wang L., 2022. Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China. Journal of Rock Mechanics and Geotechnical Engineering, 14(4), 1089-1099. https://doi.org/10.1016/j.jrmge.2021.12.011. https://doi.org/10.1016/j.jrmge.2021.12.011.">




How to Cite

Doan, V. L., Nguyen, B.-Q.-V., Nguyen, C. C., & Nguyen, C. T. (2024). Effect of time-variant rainfall on landslide susceptibility: A case study in Quang Ngai Province, Vietnam. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/20065