Monitoring monthly variation of Tonle Sap Lake water volume using Sentinel-1 imagery and satellite altimetry data

Binh Pham-Duc, Quan Tran Anh, Son Tong Si
Author affiliations

Authors

  • Binh Pham-Duc REMOSAT, University of Science and Technology of Hanoi, VAST, Hanoi, Vietnam
  • Quan Tran Anh Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Son Tong Si REMOSAT, University of Science and Technology of Hanoi, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/18897

Keywords:

Tonle Sap Lake; lake volume monitoring; Sentinel-1; altimetry data

Abstract

This work estimates the surface water volume variation of the Cambodian Tonle Sap Lake at a monthly scale from 2015-2022. To achieve this, radar Sentinel-1 imagery was processed using the Google Earth Engine platform to generate backscatter coefficient maps. The Otsu method was utilized to identify the optimal threshold to classify each backscatter coefficient map into water or non-water clusters. Additionally, altimetry data from three satellites (i.e., Sentinel-3, Jason-3, and Jason-CS/Sentinel-6) was processed to estimate Tonle Sap Lake’s water level variation using the AlTiS software. Surface water maps of the lake, derived from MODIS and clear-sky Sentinel-2 imagery, were used to validate the lake’s surface water extent time series, while in situ water level data collected at Prek Kdam station was used to validate the variation of the lake’s water height. Our results estimated that the lake’s open water area varies from 2200 to 6000 km2, while its water level ranges from 3.1 to 10.9 m. Combining the two time series, we estimated that Tonle Sap Lake’s water volume varies between approximately -7.2 and 9.4 km3 month-1, which shows high correlation with the variation of the water volume flowing through Chau Doc and Tan Chau stations (R = 0.9528 after removing the time lag). This study highlights the ability of satellite data for lake monitoring, which is very useful in remote areas where gauge stations are limited or unavailable. Future work aims to test the accuracy of the proposed methodology in other types of environments, particularly in mountainous regions of North Vietnam, where the terrain is very steep.

Downloads

Download data is not yet available.

References

Aires F., Miolane L., Prigent C., Pham B., Fluet-Chouinard E., Lehner B., Papa F., 2017. A Global Dynamic Long-Term Inundation Extent Dataset at High Spatial Resolution Derived through Downscaling of Satellite Observations. Journal of Hydrometeorology, 18(5), 1305–1325. https://doi.org/https://doi.org/10.1175/JHM-D-16-0155.1.

Aires F., Venot J.-P., Massuel S., Gratiot N., Pham-Duc B., Prigent C., 2020. Surface Water Evolution (2001-2017) at the Cambodia/Vietnam Border in the Upper Mekong Delta Using Satellite MODIS Observations. Remote Sensing, 12(5), 800. https://doi.org/10.3390/rs12050800.

Arias M.E., Cochrane T.A., Piman T., Kummu M., Caruso B.S., Killeen T.J., 2012. Quantifying changes in flooding and habitats in the Tonle Sap Lake (Cambodia) caused by water infrastructure development and climate change in the Mekong Basin. Journal of Environmental Management, 112, 53–66. https://doi.org/https://doi.org/10.1016/j.jenvman.2012.07.003.

Baup F., Frappart F., Maubant J., 2014. Combining high-resolution satellite images and altimetry to estimate the volume of small lakes. Hydrology and Earth System Sciences, 18(5), 2007–2020. https://doi.org/10.5194/hess-18-2007-2014.

Benveniste J., 2011. Radar Altimetry: Past, Present and Future. In S. Vignudelli, A.G. Kostianoy, P. Cipollini, J. Benveniste (Eds.), Coastal Altimetry. Springer Berlin Heidelberg, 1–17. https://doi.org/10.1007/978-3-642-12796-0_1.

Birkett C., Reynolds C., Beckley B., Doorn B., 2011. From Research to Operations: The USDA Global Reservoir and Lake Monitor BT - Coastal Altimetry (S. Vignudelli, A. G. Kostianoy, P. Cipollini, & J. Benveniste (eds.). Springer Berlin Heidelberg, 19–50. https://doi.org/10.1007/978-3-642-12796-0_2.

Biswas N.K., Hossain F., Bonnema M., Okeowo M. A., Lee H., 2019. An altimeter height extraction technique for dynamically changing rivers of South and Southeast Asia. Remote Sensing of Environment, 221, 24–37. https://doi.org/https://doi.org/10.1016/j.rse.2018.10.033.

Bjerklie D.M., Lawrence Dingman S., Vorosmarty C.J., Bolster C.H., Congalton R.G., 2003. Evaluating the potential for measuring river discharge from space. Journal of Hydrology, 278(1), 17–38. https://doi.org/https://doi.org/10.1016/S0022-1694(03)00129-X.

Brisco B., Short N., van der Sanden J., Landry R., Raymond D., 2009. A semi-automated tool for surface water mapping with RADARSAT-1. Canadian Journal of Remote Sensing, 35(4), 336–344. https://doi.org/10.5589/m09-025.

Bruno M.F., Molfetta M.G., Mossa M., Nutricato R., Morea A., Chiaradia M.T., 2016. Coastal Observation through Cosmo-SkyMed High-Resolution SAR Images. Journal of Coastal Research, 75(sp1), 795–799. https://doi.org/10.2112/SI75-160.1.

Chang C.-H., Lee H., Kim D., Hwang E., Hossain F., Chishtie F., Jayasinghe S., Basnayake S., 2020. Hindcast and forecast of daily inundation extents using satellite SAR and altimetry data with rotated empirical orthogonal function analysis: Case study in Tonle Sap Lake Floodplain. Remote Sensing of Environment, 241, 111732. https://doi.org/https://doi.org/10.1016/j.rse.2020.111732.

Chen Z., Zhao S., 2022. Automatic monitoring of surface water dynamics using Sentinel-1 and Sentinel-2 data with Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 113, 103010. https://doi.org/https://doi.org/10.1016/j.jag.2022.103010.

Crétaux J.-F., Abarca-del-Río R., Bergé-Nguyen M., Arsen A., Drolon V., Clos G., Maisongrande P., 2016. Lake Volume Monitoring from Space. Surveys in Geophysics, 37(2), 269–305. https://doi.org/10.1007/s10712-016-9362-6.

Crétaux J.-F., Arsen A., Calmant S., Kouraev A., Vuglinski V., Bergé-Nguyen M., Gennero M.-C., Nino F., Abarca Del Rio R., Cazenave A., Maisongrande P., 2011. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Advances in Space Research, 47(9), 1497–1507. https://doi.org/https://doi.org/10.1016/j.asr.2011.01.004.

CTOH, 2022. Center for Topographic studies of the Ocean and Hydrosphere. http://ctoh.legos.obs-mip.fr/

Dao P.D., Liou Y.-A., 2015. Object-Based Flood Mapping and Affected Rice Field Estimation with Landsat 8 OLI and MODIS Data. Remote Sensing, 7(5), 5077–5097. https://doi.org/10.3390/rs70505077.

Dasgupta A., Grimaldi S., Ramsankaran R., Pauwels V.R.N., Walker J.P., Chini M., Hostache R., Matgen P., 2018. Flood Mapping Using Synthetic Aperture Radar Sensors From Local to Global Scales. In Global Flood Hazard. American Geophysical Union (AGU), 55–77. https://doi.org/https://doi.org/10.1002/9781119217886.ch4.

Dettmering D., Ellenbeck L., Scherer D., Schwatke C., Niemann C., 2020. Potential and Limitations of Satellite Altimetry Constellations for Monitoring Surface Water Storage Changes - A Case Study in the Mississippi Basin. Remote Sensing, 12(20), 3320. https://doi.org/10.3390/rs12203320.

Ding X., Li X., 2011. Monitoring of the water-area variations of Lake Dongting in China with ENVISAT ASAR images. International Journal of Applied Earth Observation and Geoinformation, 13(6), 894–901. https://doi.org/https://doi.org/10.1016/j.jag.2011.06.009.

Downing J.A., Prairie Y.T., Cole J.J., Duarte C.M., Tranvik L.J., Striegl R.G., McDowell W.H., Kortelainen P., Caraco N.F., Melack J.M., Middelburg J.J., 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388.

Du Y., Xue H., Wu S., Ling F., Xiao F., Wei X., 2011. Lake area changes in the middle Yangtze region of China over the 20th century. Journal of Environmental Management, 92(4), 1248–1255. https://doi.org/https://doi.org/10.1016/j.jenvman.2010.12.007.

ESA, 2015. Sentinel-1 Technical Guides.

ESA, 2016. SAR Basics with the Sentinel-1 Toolbox in SNAP Tutorial. https://step.esa.int/main/doc/tutorials/sentinel-1-toolbox-tutorials/

European_Commission, 2022. Global Surface Water Explorer. https://global-surface-water.appspot.com/#

Feng L., Hu C., Chen X., Cai X., Tian L., Gan W., 2012. Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010. Remote Sensing of Environment, 121, 80–92. https://doi.org/https://doi.org/10.1016/j.rse.2012.01.014.

Frappart F., Biancamaria S., Normandin C., Blarel F., Bourrel L., Aumont M., Azemar P., Vu P.-L., Le Toan T., Lubac B., Darrozes J., 2018. Influence of recent climatic events on the surface water storage of the Tonle Sap Lake. Science of The Total Environment, 636, 1520–1533. https://doi.org/https://doi.org/10.1016/j.scitotenv.2018.04.326.

Frappart F., Blarel F., Fayad I., Bergé-Nguyen M., Crétaux J.-F., Shu S., Schregenberger J., Baghdadi N., 2021. Evaluation of the Performances of Radar and Lidar Altimetry Missions for Water Level Retrievals in Mountainous Environment: The Case of the Swiss Lakes. Remote Sensing, 13(11), 2196. https://doi.org/10.3390/rs13112196.

Frappart F., Calmant S., Cauhopé M., Seyler F., Cazenave A., 2006. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment, 100(2), 252–264. https://doi.org/https://doi.org/10.1016/j.rse.2005.10.027.

Frappart F., Do Minh K., L’Hermitte J., Cazenave A., Ramillien G., Le Toan T., Mognard-Campbell N., 2006. Water volume change in the lower Mekong from satellite altimetry and imagery data. Geophysical Journal International, 167(2), 570–584. https://doi.org/10.1111/j.1365-246X.2006.03184.x

Fujii H., Garsdal H., Ward P., Ishii M., Morishita K., Boivin T., 2003. Hydrological roles of the Cambodian floodplain of the Mekong River. International Journal of River Basin Management, 1(3), 253–266. https://doi.org/10.1080/15715124.2003.9635211.

Hanson P.C., Carpenter S.R., Cardille J.A., Coe M.T., Winslow L.A., 2007. Small lakes dominate a random sample of regional lake characteristics. Freshwater Biology, 52(5), 814–822. https://doi.org/https://doi.org/10.1111/j.1365-2427.2007.01730.x.

Huth J., Gessner U., Klein I., Yesou H., Lai X., Oppelt N., Kuenzer C., 2020. Analyzing Water Dynamics Based on Sentinel-1 Time Series a Study for Dongting Lake Wetlands in China. In Remote Sensing, 12(11), 1761. https://doi.org/10.3390/rs12111761.

Ji X., Li Y., Luo X., He D., 2018. Changes in the Lake Area of Tonle Sap: Possible Linkage to Runoff Alterations in the Lancang River? Remote Sensing, 10(6), 866. https://doi.org/10.3390/rs10060866.

Kummu M., 2009. Water management in Angkor: Human impacts on hydrology and sediment transportation. Journal of Environmental Management, 90(3), 1413–1421. https://doi.org/https://doi.org/10.1016/j.jenvman.2008.08.007.

Kummu M., Sarkkula J., 2008. Impact of the Mekong River Flow Alteration on the Tonle Sap Flood Pulse. AMBIO: A Journal of the Human Environment, 37(3), 185–192. https://doi.org/10.1579/0044-7447(2008)37[185:IOTMRF]2.0.CO;2.

Lehner B., Döll P., 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology, 296(1–4), 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028.

Ma B., Wu L., Zhang X., Li X., Liu Y., Wang S., 2014. Locally adaptive unmixing method for lake-water area extraction based on MODIS 250m bands. International Journal of Applied Earth Observation and Geoinformation, 33, 109–118. https://doi.org/https://doi.org/10.1016/j.jag.2014.05.002.

Martinis S., Kuenzer C., Wendleder A., Huth J., Twele A., Roth A., Dech S., 2015. Comparing four operational SAR-based water and flood detection approaches. International Journal of Remote Sensing, 36(13), 3519–3543. https://doi.org/10.1080/01431161.2015.1060647.

McDonald C.P., Rover J.A., Stets E.G., Striegl R.G., 2012. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnology and Oceanography, 57(2), 597–606. https://doi.org/https://doi.org/10.4319/lo.2012.57.2.0597.

Ngoc Anh Nguyen, 2017. Historic drought and salinity intrusion in the Mekong Delta in 2016: Lessons learned and response solutions. Vietnam Journal of Science, Technology and Engineering, 59(1SE-), 93–96. https://doi.org/10.31276/VJSTE.59(1).93.

Otsu N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076.

Papa F., Durand F., Rossow W.B., Rahman A., Bala S.K., 2010. Satellite altimeter-derived monthly discharge of the Ganga-Brahmaputra River and its seasonal to interannual variations from 1993 to 2008. Journal of Geophysical Research: Oceans, 115(C12). https://doi.org/https://doi.org/10.1029/2009JC006075.

Pekel J.-F., Cottam A., Gorelick N., Belward A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 1–19. https://doi.org/10.1038/nature20584.

Pham Duc B., Tong Si S., 2021. Monitoring spatial-temporal dynamics of small lakes based on SAR Sentinel-1 observations: a case study over Nui Coc Lake (Vietnam). Vietnam J. Earth Sci., 44(1), 1–17. https://doi.org/10.15625/2615-9783/16315.

Pham-Duc B., Frappart F., Tran-Anh Q., Si S.T., Phan H., Quoc S.N., Le A.P., Viet B. Do., 2022. Monitoring Lake Volume Variation from Space Using Satellite Observations: A Case Study in Thac Mo Reservoir (Vietnam). Remote Sensing, 14(16), 4023. https://doi.org/10.3390/rs14164023.

Pham-Duc B., Papa F., Prigent C., Aires F., Ciancamaria S., Frappart F., 2019. Variations of Surface and Subsurface Water Storage in the Lower Mekong Basin (Vietnam and Cambodia) from Multisatellite Observations. Water, 11(1), 75. https://doi.org/10.3390/w11010075.

Pham-Duc B., Prigent C., Aires F., 2017. Surface Water Monitoring within Cambodia and the Vietnamese Mekong Delta over a Year, with Sentinel-1 SAR Observations. Water, 9(6), 366. https://doi.org/10.3390/w9060366.

Pierdicca N., Pulvirenti L., Chini M., Guerriero L., Candela L., 2013. Observing floods from space: Experience gained from COSMO-SkyMed observations. Acta Astronautica, 84, 122–133. https://doi.org/10.1016/j.actaastro.2012.10.034.

Reschke J., Bartsch A., Schlaffer S., Schepaschenko D., 2012. Capability of C-Band SAR for Operational Wetland Monitoring at High Latitudes. Remote Sensing, 4(10), 2923. https://doi.org/10.3390/rs4102923.

Sakamoto T., Van Nguyen N., Kotera A., Ohno H., Ishitsuka N., Yokozawa M., 2007. Detecting temporal changes in the extent of annual flooding within the Cambodia and the Vietnamese Mekong Delta from MODIS time-series imagery. Remote Sensing of Environment, 109(3), 295–313. https://doi.org/10.1016/j.rse.2007.01.011.

Salmivaara A., Kummu M., Varis O., Keskinen M., 2016. Socio-Economic Changes in Cambodia’s Unique Tonle Sap Lake Area: A Spatial Approach. Applied Spatial Analysis and Policy, 9(3), 413–432. https://doi.org/10.1007/s12061-015-9157-z.

Santoro M., Wegmüller U., Lamarche C., Bontemps S., Defourny P., Arino O., 2015. Strengths and weaknesses of multi-year Envisat ASAR backscatter measurements to map permanent open water bodies at global scale. Remote Sensing of Environment, 171, 185–201. https://doi.org/10.1016/j.rse.2015.10.031.

Seekell D.A., Pace M.L., 2011. Does the Pareto distribution adequately describe the size-distribution of lakes? Limnology and Oceanography, 56(1), 350–356. https://doi.org/https://doi.org/10.4319/lo.2011.56.1.0350.

Seekell D.A., Pace M.L., Tranvik L.J., Verpoorter C., 2013. A fractal-based approach to lake size-distributions. Geophysical Research Letters, 40(3), 517–521. https://doi.org/https://doi.org/10.1002/grl.50139.

Siev S., Paringit E.C., Yoshimura C., Hul S., 2016. Seasonal Changes in the Inundation Area and Water Volume of the Tonle Sap River and Its Floodplain. Hydrology, 3(4), 33. https://doi.org/10.3390/hydrology3040033.

Soukhaphon A., Baird I.G., Hogan Z.S., 2021. The Impacts of Hydropower Dams in the Mekong River Basin: A Review. Water, 13(3), 265. https://doi.org/10.3390/w13030265.

Steveson J., Siringan F., Finn J.A.N., Madulid D., Heijnis H., 2010. Paoay Lake, northern Luzon, the Philippines: a record of Holocene environmental change. Global Change Biology, 16(6), 1672–1688. https://doi.org/https://doi.org/10.1111/j.1365-2486.2009.02039.x.

Vermote E., 2015. MOD09A1 MODIS Surface Reflectance 8-Day L3 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. https://doi.org/http://doi.org/10.5067/MODIS/MOD09A1.006.

Verpoorter C., Kutser T., Seekell D.A., Tranvik L.J., 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396–6402. https://doi.org/10.1002/2014GL060641.

Wang Y., Feng L., Liu J., Hou X., Chen D., 2020. Changes of inundation area and water turbidity of Tonle Sap Lake: responses to climate changes or upstream dam construction? Environmental Research Letters, 15(9), 0940a1. https://doi.org/10.1088/1748-9326/abac79.

Williamson C.E., Saros J.E., Vincent W.F., Smol J.P., 2009. Lakes and Reservoirs as Sentinels, Integrators, and Regulators of Climate Change. Limnology and Oceanography, 54(6), 2273–2282. http://www.jstor.org/stable/20622831.

Wingham D.J., Rapley C.G., Griffiths H., 1986. New techniques in satellite altimeter tracking systems. ESA Proceedings of the 1986 International Geoscience and Remote Sensing Symposium (IGARSS’86) on Remote Sensing: Today’s Solutions for Tomorrow’s Information Needs, 3 (September 1986).

Xing L., Tang X., Wang H., Fan W., Wang G., 2018. Monitoring monthly surface water dynamics of Dongting Lake using Sentinel-1 data at 10 m. PeerJ, 6, e4992. https://doi.org/10.7717/peerj.4992.

Xu H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179.

Xu N., Ma Y., Wei Z., Huang C., Li G., Zheng H., Wang X.H., 2022. Satellite observed recent rising water levels of global lakes and reservoirs. Environmental Research Letters, 17(7), 74013. https://doi.org/10.1088/1748-9326/ac78f8.

Zeng L., Schmitt M., Li L., Zhu X.X., 2017. Analysing changes of the Poyang Lake water area using Sentinel-1 synthetic aperture radar imagery. International Journal of Remote Sensing, 38(23), 7041–7069. https://doi.org/10.1080/01431161.2017.1370151.

Zhang L., Guo H., Li X., Wang L., 2014. Ecosystem assessment in the Tonle Sap Lake region of Cambodia using RADARSAT-2 Wide Fine-mode SAR data. International Journal of Remote Sensing, 35(8), 2875–2892. https://doi.org/10.1080/01431161.2014.890301.

Ziv G., Baran E., Nam S., Rodríguez-Iturbe I., Levin S.A., 2012. Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences, 109(15), 5609–5614. https://doi.org/10.1073/pnas.1201423109.

Downloads

Published

13-09-2023

How to Cite

Pham-Duc, B., Tran Anh, Q., & Tong Si, S. (2023). Monitoring monthly variation of Tonle Sap Lake water volume using Sentinel-1 imagery and satellite altimetry data . Vietnam Journal of Earth Sciences, 45(4), 479–496. https://doi.org/10.15625/2615-9783/18897

Issue

Section

Articles