A framework for flood depth using hydrodynamic modeling and machine learning in the coastal province of Vietnam

Huu Duy Nguyen, Dinh Kha Dang, Y Nhu Nguyen, Chien Pham Van, Quang-Hai Truong, Quang-Thanh Bui, Alexandru- Ionut Petrisor
Author affiliations


  • Huu Duy Nguyen VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Dinh Kha Dang VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Y Nhu Nguyen VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Chien Pham Van Thuy Loi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
  • Quang-Hai Truong Institute of Vietnamese Studies & Development Sciences, Vietnam National University (VNU), Hanoi 10000, Vietnam
  • Quang-Thanh Bui VNU University of Science, Vietnam National University, Hanoi, Vietnam
  • Alexandru- Ionut Petrisor 1-Ion Mincu University of Architecture and Urbanism, 10014 Bucharest, Romania; 2-Technical University of Moldova, Faculty of Urbanism and Architecture, Department of Architecture, 2004 Chisinau, Moldova; 3-National Institute for Research and Development in Tourism, 50741 Bucharest, Romania; 4-National Institute for Research and Development in Constructions, Urbanism and Sustainable Spatial Development URBAN-INCERC, Bucharest, Romania, 021652 Bucharest, Romania




Flood depth, machine learning, hydrodynamics, Quang Tri, Vietnam.


Flood models based on traditional hydrodynamic modeling encounter significant difficulties with real-time predictions, require enormous computational resources, and perform poorly in data-limited regions. The difficulties are compounded as flooding worldwide worsens due to the increasing frequency of short-term torrential rain events, making it more challenging to predict floods over the long term. This study aims to address these challenges by developing a rapid flood forecasting model combining machine learning algorithms (support vector regression, XGBoost regression, CatBoost regression, and decision tree regression) with hydrodynamic modeling in Quang Tri province in Vietnam. 560 flood depth locations were obtained by hydrodynamic modeling, and several locations measured in the field were used as input data for the machine learning models to build a flood depth map for the study area. The statistical indices used to evaluate the performance of the four proposed models were the receiver operating characteristic (ROC) curve, area under the ROC curve, root mean square error, mean absolute error, and coefficient of determination (R2). The results showed that all four models successfully constructed a flood depth map for the study area. Among the four proposed models, CatBoost regression performed best, with an R² value of 0.86. This was followed by XGBoost regression (R²=0.84), decision tree regression (R²=0.72), and then support vector regression (R2=0.7). This integration of hydrodynamic modeling and machine learning complements the framework in much of the existing literature. It can provide decision-makers and local authorities with an advanced flood warning tool and contribute to improving sustainable development strategies in this and similar regions.


Download data is not yet available.


Abbott M.B., Ionescu W., 1967. On the numerical computation of nearly horizontal flows. Journal of Hydraulic Research, 5(2), 97-117.

Abedi R., Costache R., Shafizadeh-Moghadam H., Pham Q.B., 2022. Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees. Geocarto International, 37(19), 5479-5496.

Abu El-Magd S.A., 2022. Random forest and naïve Bayes approaches as tools for flash flood hazard susceptibility prediction, South Ras El-Zait, Gulf of Suez Coast, Egypt. Arabian Journal of Geosciences, 15(3), 217.

Abujayyab S.K., Kassem M.M., Khan A.A., Wazirali R., Coşkun M., Taşoğlu E., Öztürk A., Toprak F., 2022. Wildfire Susceptibility Mapping Using Five Boosting Machine Learning Algorithms: The Case Study of the Mediterranean Region of Turkey. Advances in Civil Engineering, 3959150.

Bansal M., Goyal A., Choudhary A., 2022. A comparative analysis of K-Nearest Neighbour, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decision Analytics Journal, 100071.

Bronstert A., Niehoff D., Bürger G., 2002. Effects of climate and land‐use change on storm runoff generation: present knowledge and modelling capabilities. Hydrological Processes, 16(2), 509-529.

Bui D.T., Ngo P.-T.T., Pham T.D., Jaafari A., Nguyen Q.M., Pham V.H., Samui P., 2019. A novel hybrid approach based on a swarm intelligence optimized extreme learning machine for flash flood susceptibility mapping. Catena, 179, 184-196.

Chakrabortty R., Pal S.C., Janizadeh S., Santosh M., Roy P., Chowdhuri I., Saha A., 2021. Impact of climate change on future flood susceptibility: an evaluation based on deep learning algorithms and GCM model. Water Resources Management, 35, 4251-4274.

Chen W., Hong H., Li S., Shahabi H., Wang Y., Wang X., Ahmad B.B., 2019. Flood susceptibility modelling using novel hybrid approach of reduced-error pruning trees with bagging and random subspace ensembles. Journal of Hydrology, 575, 864-873.

Choubin B., Moradi E., Golshan M., Adamowski J., Sajedi-Hosseini F., Mosavi A., 2019. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087-2096.

Costache R., Arabameri A., Costache I., Crăciun A., Pham T.B., 2022. "New machine learning ensemble for flood susceptibility estimation. Water Resources Management, 36(12), 4765-4783.

Costache R., Arabameri A., Moayedi H., Pham Q. B., Santosh M., Nguyen H., Pandey M., Pham T.B., 2022. Flash-flood potential index estimation using fuzzy logic combined with deep learning neural network, naïve Bayes, XGBoost and classification and regression tree. Geocarto International, 37(23), 6780-6807.

Costache R., Pham Q.B., Avand M., Nguyen T.T.L., Vojtek M., Vojteková J., Lee S., Dao N.K., Pham T.T.N., Tran D.D., 2020. Novel hybrid models between bivariate statistics, artificial neural networks and boosting algorithms for flood susceptibility assessment. Journal of Environmental Management, 265, 110485.

Damadi S., Dehvari A., Dahmardeh Ghaleno M.R., Ebrahimiyan M., 2021. Flood hazard zonation using HEC-RAS hydraulic model in Sarbaz River, Sistan and Baluchestan Province. Watershed Engineering and Management, 13(3), 590-601.

Devan P., Khare N., 2020. An efficient XGBoost–DNN-based classification model for network intrusion detection system. Neural Computing and Applications, 32, 12499-12514.

Doang Q.T., Pham T.N., 2022. Research and develop integrated flood forecasting and warning tools for 03 river basins: Thach Han, Vu Gia-Thu Bon and Tra Khuc-Song Ve. Hydrometeorology Journal, 736, 93-110.

Doocy S., Daniels A., Murray S., Kirsch T.D., 2013. The human impact of floods: a historical review of events 1980-2009 and systematic literature review. PLoS currents 5(5).

Eslaminezhad S.A., Eftekhari M., Azma A., Kiyanfar R., Akbari M., 2022. Assessment of flood susceptibility prediction based on optimized tree-based machine learning models. Journal of Water and Climate Change, 13(6), 2353-2385.

Falah F., Rahmati O., Rostami M., Ahmadisharaf E., Daliakopoulos I.N., Pourghasemi H.R., 2019. Artificial neural networks for flood susceptibility mapping in data-scarce urban areas. In: Spatial modeling in GIS and R for Earth and Environmental Sciences, Eds, Pourghasemi H.Z, Elsevier, 323-336.

Farooq M., Shafique M., Khattak M.S., 2019. Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Natural Hazards, 97, 477-492.

Ghanbari M., Arabi M., Kao S.C., Obeysekera J., Sweet W., 2021. Climate change and changes in compound coastal‐riverine flooding hazard along the U.S. coasts. Earth's Future, 9(5), e2021EF002055.

Gharakhanlou N.M., Perez L., 2023. Flood susceptible prediction through the use of geospatial variables and machine learning methods. Journal of Hydrology, 671, 129121.

Ghosh A., Maiti R., 2021. Soil erosion susceptibility assessment using logistic regression, decision tree and random forest: study on the Mayurakshi river basin of Eastern India. Environmental Earth Sciences, 80, 1-16.

Hajek P., Abedin M.Z., Sivarajah, U., 2022. Fraud detection in mobile payment systems using an xgboost-based framework. Information Systems Frontiers, 1-19.

Hall J.W., Meadowcroft I.C., Sayers P.B., Bramley M.E., 2003. Integrated flood risk management in england and wales. Natural Hazards Review, 4(3), 126-135.

Hammami S., Zouhri L., Souissi D., Souei A., Zghibi A., Marzougui A., Dlala M., 2019. Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (TUNISIA). Arabian Journal of Geosciences, 12, 1-16.

Hens L., Nguyen A.T., Hanh T.H., Cuong N.S., Lan T.D., Van Thanh N., Le D.T., 2018. Sea-level rise and resilience in Vietnam and the asia-pacific: A synthesis. Vietnam J. Earth Sci., 40(2), 126-152. https://doi.org/10.15625/0866-7187/40/2/11107. https://doi.org/10.15625/0866-7187/40/2/11107.">

Hoang-Cong H., Ngo-Duc T., Nguyen-Thi T., Trinh-Tuan L., Jing Xiang C., Tangang F., Jerasorn S., Phan-Van T., 2022. A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall. Vietnam J. Earth Sci., 44(1), 92-108. https://doi.org/10.15625/2615-9783/16942. https://doi.org/10.15625/2615-9783/16942.">

Hosseiny H., Nazari F., Smith V., Nataraj C., 2020. A framework for modeling flood depth using a hybrid of hydraulics and machine learning. Scientific Reports, 10(1), 1-14.

Islam A.R.M.T., Talukdar S., Mahato S., Kundu S., Eibek K.U., Pham Q.B., Kuriqi A., Ngo T.T.L., 2021. Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075.

Johnson C.L., Priest S.J., 2008. Flood risk management in england: A changing landscape of risk responsibility? International Journal of Water Resources Development, 24(4), 513-525.

Kadam P., Sen D., 2012. Flood inundation simulation in ajoy river using mike-flood. ISH Journal of Hydraulic Engineering, 18(2), 129-141.

Khosravi K., Shahabi H., Pham B.T., Adamowski J., Shirzadi A., Pradhan B., Dou J., Ly H.-B., Gróf G., Ho H.L., 2019. A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. Journal of Hydrology, 573, 311-323.

Li L., Zhang Z., Xiong Y., Hu Z., Liu S., Tu B., Yao Y., 2022. Prediction of hospital mortality in mechanically ventilated patients with congestive heart failure using machine learning approaches. International Journal of Cardiology, 358, 59-64.

Lin J.-Y., Cheng C.-T., Chau K.-W., 2006. Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal, 51(4), 599-612.

Liuzzo L., Sammartano V., Freni G., 2019. Comparison between different distributed methods for

flood susceptibility mapping. Water Resources Management, 33, 3155-3173.

Lu C., Zhang S., Xue D., Xiao F., Liu C., 2022. Improved estimation of coalbed methane content using the revised estimate of depth and catboost algorithm: A case study from southern sichuan basin, China. Computers & Geosciences, 158, 104973.

Luu C., Nguyen D.D., Amiri M., Van P.T., Bui Q.D., Prakash I., Pham B.T., 2022b. Flood susceptibility modeling using radial basis function classifier and fisher's linear discriminant function. Vietnam J. Earth Sci., 44(1), 55-72. https://doi.org/10.15625/2615-9783/16626. https://doi.org/10.15625/2615-9783/16626.">

Luu C., Nguyen D.-D., Van Phong T., Prakash I., Pham B.T., 2021. Using decision tree j48 based machine learning algorithm for flood susceptibility mapping: A case study in Quang Binh province, Vietnam. CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure: Proceedings of the 6th International Conference on Geotechnics, Civil Engineering and Structures, Springer, 1927-1935.

Luu C., Pham B.T., Van Phong T., Costache R., Nguyen H.D., Amiri M., Bui Q.D., Nguyen L.T., Van Le H., Prakash I., 2021. Gis-based ensemble computational models for flood susceptibility prediction in the Quang Binh province, Vietnam. Journal of Hydrology, 599, 126500.

Ma M., Zhao G., He B., Li Q., Dong H., Wang S., Wang Z., 2021. Xgboost-based method for flash flood risk assessment. Journal of Hydrology, 598, 126382.

Mani P., Chatterjee C., Kumar R., 2014. Flood hazard assessment with multiparameter approach derived from coupled 1D and 2D hydrodynamic flow model. Natural Hazards, 70, 1553-1574.

Marín A., Martínez-Merino L.I., Puerto J., Rodríguez-Chía A.M., 2022. The soft-margin support vector machine with ordered weighted average. Knowledge-Based Systems, 237, 107705.

Mind'je R., Li L., Amanambu A.C., Nahayo L., Nsengiyumva J.B., Gasirabo A., Mindje M., 2019. Flood susceptibility modeling and hazard perception in rwanda. International Journal of Disaster Risk Reduction, 38, 101211.

Mirzaei S., Vafakhah M., Pradhan B., Alavi S.J., 2021. Flood susceptibility assessment using extreme gradient boosting (egb), Iran. Earth Science Informatics, 14, 51-67.

Nachappa T.G., Piralilou S.T., Gholamnia K., Ghorbanzadeh O., Rahmati O., Blaschke T., 2020. Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using dempster shafer theory. Journal of Hydrology, 590, 125275.

Naghibi S.A., Ahmadi K., Daneshi A., 2017. Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resources Management, 31, 2761-2775.

Namara W.G., Damisse T.A., Tufa F.G., 2022. Application of hec-ras and hec-georas model for flood inundation mapping, the case of awash bello flood plain, upper awash river basin, oromiya regional state, ethiopia. Modeling Earth Systems and Environment, 8(2), 1449-1460.

Nefeslioglu H., Sezer E., Gokceoglu C., Bozkir A., Duman T., 2010. Assessment of landslide susceptibility by decision trees in the metropolitan area of istanbul, turkey. Mathematical Problems in Engineering, 901095.

Nevo S., Morin E., Rosenthal A.G., Metzger A., Barshai C., Weitzner D., Voloshin D., Kratzert F., Elidan G., Dror G., 2021. Flood forecasting with machine learning models in an operational framework. arXiv preprint arXiv: 2111.02780.

Ngo H.L., Nguyen H.D., Loubiere P., Van Tran T., Șerban G., Zelenakova M., Brețcan P., Laffly D., 2022. The composition of time-series images and using the technique smote enn for balancing datasets in land use/cover mapping. Acta Montanistica Slovaca, 27(2), 342-359.

Ngo T.T.L., Pandey M., Janizadeh S., Bhunia G.S., Norouzi A., Ali S., Pham Q.B., Anh D.T., Ahmadi K., 2022. Flood susceptibility modeling based on new hybrid intelligence model: Optimization of xgboost model using ga metaheuristic algorithm. Advances in Space Research, 69(9), 3301-3318.

Nguyen H.D., 2022. Flood susceptibility assessment using hybrid machine learning and remote sensing in Quang Tri province, Vietnam. Transactions in GIS, 26, 2776-2801.

Nguyen H.D., 2022a. Flood susceptibility assessment using hybrid machine learning and remote sensing in Quang Tri province, Vietnam. Transactions in GIS, 26(7), 2776-2801.

Nguyen H.D., 2022b. Gis-based hybrid machine learning for flood susceptibility prediction in the Nhat Le - Kien Giang watershed, Vietnam. Earth Science Informatics, 1-18.

Nguyen H.D., 2022c. Spatial modeling of flood hazard using machine learning and gis in ha tinh province, Vietnam. Journal of Water and Climate Change, 14(1), 200-222.

Nguyen H.D., Dang D.K., Nguyen Q.-H., Bui Q.-T., Petrisor A.-I., 2022a. Evaluating the effects of climate and land use change on the future flood susceptibility in the central region of Vietnam by integrating land change modeler, machine learning methods. Geocarto International, 1-36.

Nguyen H.D., Pham V.D., Lan Vu P., Thanh Nguyen T.H., Nguyen Q.-H., Nguyen T.G., Dang D.K., Tran V.T., Bui Q.-T., Lai T.A., Petrişor A.-I., 2022b. Cropland abandonment and flood risks: Spatial analysis of a case in North central Vietnam. Anthropocene, 38, 100341.

Nguyen H.D., Quang-Thanh B., Nguyen Q.-H., Nguyen T.G., Pham L.T., Nguyen X.L., Vu P.L., Thanh Nguyen T.H., Nguyen A.T., Petrisor A.-I., 2022c. A novel hybrid approach to flood susceptibility assessment based on machine learning and land use change. Case study: A river watershed in vietnam. Hydrological Sciences Journal, 67(7), 1065-1083.

Nguyen T.G., Tran N.A., Vu P.L., Nguyen Q.-H., Nguyen H.D., Bui Q.-T., 2021. Salinity intrusion prediction using remote sensing and machine learning in data-limited regions: A case study in Vietnam's Mekong Delta. Geoderma Regional, 27, e00424.

Pham-Thi T.-H., Matsumoto J., Nodzu M.I., 2021. Evaluation of the Global Satellite Mapping of Precipitation (GSMaP) data on sub-daily rainfall patterns in Vietnam. Vietnam J. Earth Sci., 44(1), 33-54. https://doi.org/10.15625/2615-9783/16594. https://doi.org/10.15625/2615-9783/16594.">

Pradhan B., Youssef A., 2011. A 100‐year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan river corridor, malaysia. Journal of Flood Risk Management, 4(3), 189-202.

Prasad P., Loveson V.J., Das B., Kotha M., 2022. Novel ensemble machine learning models in flood susceptibility mapping. Geocarto International, 37(16), 4571-4593.

Saghafian B., Farazjoo H., Bozorgy B., Yazdandoost F., 2008. Flood intensification due to changes in land use. Water Resources Management, 22, 1051-1067.

Sahani N., Ghosh T., 2021. Gis-based spatial prediction of recreational trail susceptibility in protected area of Sikkim Himalaya using logistic regression, decision tree and random forest model. Ecological Informatics, 64, 101352.

Sahin E.K., 2022. Comparative analysis of gradient boosting algorithms for landslide susceptibility mapping. Geocarto International, 37(9), 2441-2465.

Shafizadeh-Moghadam H., Valavi R., Shahabi H., Chapi K., Shirzadi A., 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management, 217, 1-11.

Talukdar S., Ghose B., Salam R., Mahato S., Pham Q.B., Linh N.T.T., Costache R., Avand M., 2020. Flood susceptibility modeling in teesta river basin, bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment, 34, 2277-2300.

Tansar H., Babur M., Karnchanapaiboon S.L., 2020. Flood inundation modeling and hazard assessment in lower ping river basin using mike flood. Arabian Journal of Geosciences, 13, 1-16.

Tehrany M.S., Kumar L., 2018. The application of a dempster-shafer-based evidential belief function in flood susceptibility mapping and comparison with frequency ratio and logistic regression methods. Environmental Earth Sciences, 77, 1-24.

Tehrany M.S., Pradhan B., Jebur M.N., 2014. Flood susceptibility mapping using a novel ensemble weights-of-evidence and support vector machine models in GIS. Journal of Hydrology, 512, 332-343.

Tehrany M.S., Pradhan B., Jebur M.N., 2015. Flood susceptibility analysis and its verification using a novel ensemble support vector machine and frequency ratio method. Stochastic Environmental Research and Risk Assessment, 29, 1149-1165.

Thai T.H., Tri D.Q., 2019. Combination of hydrologic and hydraulic modeling on flood and inundation warning: Case study at Tra Khuc-Ve river basin in Vietnam. Vietnam J. Earth Sci., 41(3), 240-251. https://doi.org/10.15625/0866-7187/41/3/13866. https://doi.org/10.15625/0866-7187/41/3/13866.">

Tien Bui D., Pradhan B., Lofman O., Revhaug I., 2012. Landslide susceptibility assessment in Vietnam using support vector machines, decision tree, and naive bayes models. Mathematical problems in Engineering, 974638.

Van Den Honert R.C., Mcaneney J., 2011. The 2011 brisbane floods: Causes, impacts and implications. Water, 3(4), 1149-1173.

Vapnik V., Golowich S.E., Smola A., 1997. Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems, 281-287.

Vilaysane B., Takara K., Luo P., Akkharath I., Duan W., 2015. Hydrological stream flow modelling for calibration and uncertainty analysis using swat model in the Xedone river basin, Lao pdr. Procedia Environmental Sciences, 28, 380-390.

Wen T.J., Chuan C.-H., Yang J., Tsai W.S., 2022. Predicting advertising persuasiveness: A decision tree method for understanding emotional (in) congruence of ad placement on youtube. Journal of Current Issues & Research in Advertising, 43(2), 200-218.

Yariyan P., Avand M., Abbaspour R.A., Torabi Haghighi A., Costache R., Ghorbanzadeh, O., Janizadeh, S., Blaschke, T., 2020. Flood susceptibility mapping using an improved analytic network process with statistical models. Geomatics, Natural Hazards and Risk, 11(1), 2282-2314.

Youssef A.M., Mahdi A.M., Al-Katheri M.M., Pouyan S., Pourghasemi H.R., 2023. Multi-hazards (landslides, floods, and gully erosion) modeling and mapping using machine learning algorithms. Journal of African Earth Sciences, 197, 104788.

Zhao G., Pang B., Xu Z., Peng D., Xu L., 2019. Assessment of urban flood susceptibility using semi-supervised machine learning model. Science of the Total Environment, 659, 940-949.

Zhong R., Johnson Jr R., Chen Z., 2020. Generating pseudo density log from drilling and logging-while-drilling data using extreme gradient boosting (xgboost). International Journal of Coal Geology, 220, 103416.




How to Cite

Duy Nguyen, H., Kha Dang, D., Nhu Nguyen, Y., Pham Van, C., Hai Truong, Q.-., Thanh Bui, Q.-., & Ionut Petrisor, A.-. (2023). A framework for flood depth using hydrodynamic modeling and machine learning in the coastal province of Vietnam. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/18644