A novel HHO-RSCDT ensemble learning approach for forest fire danger mapping using GIS
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/18500Keywords:
Forest fire; Random Subspace; Credal Decision Tree; Harris Hawks Optimizer; GIS; Vietnam.Abstract
Accurate prediction models for spatial prediction of forest fire danger play a vital role in predicting forest fires, which can help prevent and mitigate the detrimental effects of such disasters. This research aims to develop a new ensemble learning model, HHO-RSCDT, capable of accurately predicting spatial patterns of forest fire danger. The HHO-RSCDT method combines three distinct components, namely Random Subspace (RS), Credal Decision Tree (CDT), and Harris Hawks Optimizer (HHO). Herein, RS generates a series of subspace datasets, which are subsequently utilized to produce individual CDT classifiers. Then, HHO optimizes the ensemble model, enabling the model to achieve higher predictive performance. The model was trained and validated using a Phu Yen province, Vietnam dataset. The dataset includes 306 forest fire locations and ten influencing factors from the study province. The results showed the capability of the HHO-RSCDT model in predicting forest fire danger, with an accuracy rate of 83.7%, a kappa statistic of 0.674, and an AUC of 0.911. A comparison between the HHO-RSCDT model and two state-of-the-art machine learning methods, i.e., support vector machine (SVM) and random forest (RF), indicated that the HHO-RSCDT model could perform better, making it a valuable tool for modeling forest fire danger. The forest fire danger map produced using this novel model could be a new tool for local authorities in the Phu Yen province, assisting them in managing and protecting the forest ecosystem. By providing a detailed overview of the are as most susceptible to forest fires, the map can help authorities to develop targeted and effective forest management strategies, such as focusing on areas with high fuel loads or implementing controlled burning programs.
Downloads
References
Abawajy J.H., Kelarev A., 2017. Iterative classifier fusion system for the detection of Android malware. IEEE Transactions on Big Data, 5(3), 282-292.
Abid F., 2021. A Survey of Machine Learning Algorithms Based Forest Fires Prediction and Detection Systems. Fire Technology, 57(2), 559-590.
Ado M., Amitab K., Maji A.K., Jasińska E., Gono R., Leonowicz Z., Jasiński M., 2022. Landslide susceptibility mapping using machine learning: A literature survey. Remote Sensing, 14(13), 3029.
Agbeshie A.A., Abugre S., Atta-Darkwa T., Awuah R., 2022. A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33(5), 1419-1441.
Alabool H.M., Alarabiat D., Abualigah L., Heidari A.A., 2021. Harris hawks optimization: a comprehensive review of recent variants and applications. Neural Computing and Applications, 33(15), 8939-8980.
Bjånes A., De La Fuente R., Mena P., 2021. A deep learning ensemble model for wildfire susceptibility mapping. Ecological Informatics, 65, 101397.
Bui D.T., Bui Q.-T., Nguyen Q.-P., Pradhan B., Nampak H., Trinh P.T., 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32-44. Doi: 10.1016/j.agrformet.2016.11.002.
Bui D.T., Pradhan B., Lofman O., Revhaug I., Dick O.B., 2012. Landslide susceptibility assessment in the Hoa Binh province of Vietnam: A comparison of the Levenberg-Marquardt and Bayesian regularized neural networks. Geomorphology, 171-172, 12-29.
Calviño-Cancela M., Chas-Amil M.L., García-Martínez E.D., Touza J., 2016. Wildfire risk associated with different vegetation types within and outside wildland-urban interfaces. Forest Ecology and Management, 372, 1-9.
Chicas S.D., Østergaard Nielsen J., 2022. Who are the actors and what are the factors that are used in models to map forest fire susceptibility? A systematic review. Natural Hazards, 114(3), 2417-2434.
de Santana R.O., Delgado R.C., Schiavetti A., 2021.. Modeling susceptibility to forest fires in the Central Corridor of the Atlantic Forest using the frequency ratio method. Journal of Environmental Management, 296, 113343.
Dos Reis M., de Alencastro Graça P.M.L., Yanai A.M., Ramos C.J.P., Fearnside P.M., 2021. Forest fires and deforestation in the central Amazon: Effects of landscape and climate on spatial and temporal dynamics. Journal of Environmental Management, 288, 112310.
Dunham M., 2023. Matlab Weka Interface (https://www.mathworks.com/matlabcentral/fileexchange/21204-matlab-weka-interface), MATLAB Central File Exchange. Retrieved April 10, 2023.
Duong P.X., Du H.T., Linh V.T.T., Thai T.D., Minh-Thu P., 2020. The Effect of ENSO on Hydrological Structure and Environment in the South Central Coast-Vietnam. Journal of Marine Science, 2(1), 10-16.
Flannigan M., Wotton B., Marshall G., De Groot W., Johnston J., Jurko N., Cantin A., 2016. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Climatic Change, 134, 59-71.
Ganaie M.A., Hu M., Malik A., Tanveer M., Suganthan P., 2022. Ensemble deep learning: A review. Engineering Applications of Artificial Intelligence, 115, 105151.
Gao B.C., 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266.
Gonzalez-Olabarria J.R., Reynolds K.M., Larrañaga A., Garcia-Gonzalo J., Busquets E., Pique M., 2019. Strategic and tactical planning to improve suppression efforts against large forest fires in the Catalonia region of Spain. Forest ecology and management, 432, 612-622.
Gouveia C., Bastos A., Trigo R., DaCamara C., 2012. Drought impacts on vegetation in the pre-and post-fire events over Iberian Peninsula. Natural Hazards and Earth System Sciences, 12(10), 123-3137.
Heidari A.A., Mirjalili S., Faris H., Aljarah I., Mafarja M., Chen H., 2019. Harris hawks optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-872.
Ho T.K., 1998. The random subspace method for constructing decision forests. IEEE transactions on pattern analysis and machine intelligence, 20(8), 832-844.
Hoi N.D., Dung N.T., 2022. Structure, diversity and dynamics of natural-anthropogenic landscapes of Phu Yen province. Indian Journal of Ecology, 49(4), 1225-1233.
Iudin D., Sergeyev Y.D., Hayakawa M., 2015. Infinity computations in cellular automaton forest-fire model. Communications in Nonlinear Science and Numerical Simulation, 20(3), 861-870.
Jain P., Coogan S.C., Subramanian S.G., Crowley M., Taylor S., Flannigan M.D., 2020. A review of machine learning applications in wildfire science and management. Environmental Reviews, 28(4), 478-505.
Ke Y., Im J., Lee J., Gong H., Ryu Y., 2015. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote sensing of environment, 164, 298-313.
Lattimer B.Y., Hodges J.L., Lattimer A.M., 2020. Using machine learning in physics-based simulation of fire. Fire Safety Journal, 114, 102991.
Lee S.K., Dang T.A., 2018. Application of AquaCrop model to predict sugarcane yield under the climate change impact: A case study of Son Hoa district, Phu Yen province in Vietnam. Research on Crops, 19(2), 310-314.
Leigh C., Bush A., Harrison E.T., Ho S.S., Luke L., Rolls R.J., Ledger M.E., 2015. Ecological effects of extreme climatic events on riverine ecosystems: Insights from A ustralia. Freshwater Biology, 60(12), 2620-2638.
Littell J.S., Peterson D.L., Riley K.L., Liu Y., Luce C.H., 2016. A review of the relationships between drought and forest fire in the United States. Global change biology, 22(7), 2353-2369.
Liu Y., Goodrick S., Heilman W., 2014. Wildland fire emissions, carbon, and climate: Wildfire-climate interactions. Forest Ecology and Management, 317, 80-96.
Lung N.N., Quat N.X., Lien A., Que A., Van Con A., Ky A., Cam L.V., 2011. Final report on forest ecological stratification in Vietnam. UN-REDD Program Vietnam: Hanoi, Vietnam.
Mantas C.J., Abellán J., 2014a. Credal-C4.5: Decision tree based on imprecise probabilities to classify noisy data. Expert Systems with Applications, 41(10), 4625-4637.
Mantas C.J., Abellán J., 2014b. Credal Decision Trees to Classify Noisy Data Sets, In: Polycarpou M., de Carvalho A.C.P.L.F., Pan J.-S., Woźniak M., Quintian H., Corchado E. (Polycarpou M., de Carvalho A.C.P.L.F., Pan J.-S., Woźniak M., Quintian H., Corchado E. (Polycarpou M., de Carvalho A.C.P.L.F., Pan J.-S., Woźniak M., Quintian H., Corchado E.s), Hybrid Artificial Intelligence Systems. Springer International Publishing. Cham, 689-696.
Mantas C.J., Abellán J., Castellano J.G., 2016. Analysis of Credal-C4.5 for classification in noisy domains. Expert Systems with Applications, 61, 314-326.
Matthews S., Sullivan A.L., Watson P., Williams R.J., 2012. Climate change, fuel and fire behaviour in a eucalypt forest. Global Change Biology, 18(10), 3212-3223.
McWethy D.B., Schoennagel T., Higuera P.E., Krawchuk M., Harvey B.J., Metcalf E.C., Schultz C., Miller C., Metcalf A.L., Buma B., Virapongse A., Kulig J.C., Stedman R.C., Ratajczak Z., Nelson C.R., Kolden C., 2019. Rethinking resilience to wildfire. Nature Sustainability, 2(9), 797-804.
Mell W., Jenkins M.A., Gould J., Cheney P., 2007. A physics-based approach to modelling grassland fires. International Journal of Wildland Fire, 16(1), 1-22.
Michael Y., Helman D., Glickman O., Gabay D., Brenner S., Lensky I.M., 2021. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Science of the Total Environment, 764, 142844.
Miller C., Urban D.L., 2000. Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15, 145-154.
Moayedi H., Mehrabi M., Bui D.T., Pradhan B., Foong L.K., 2020. Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility. Journal of Environmental Management, 260, 109867.
Moinuddin K.A.M., Sutherland D., 2020. Modelling of tree fires and fires transitioning from the forest floor to the canopy with a physics-based model. Mathematics and Computers in Simulation, 175, 81-95.
Naderpour M., Rizeei H.M., Khakzad N., Pradhan B., 2019. Forest fire induced Natech risk assessment: A survey of geospatial technologies. Reliability Engineering & System Safety, 191, 106558.
Naderpour M., Rizeei H.M., Ramezani F., 2021. Forest Fire Risk Prediction: A Spatial Deep Neural Network-Based Framework. Remote Sensing, 13(13), 2513.
Nguyen H.N., Hoang T.B.H., 2022. Vietnam: Vietnam in a Time of El Niño, in El Niño Ready Nations and Disaster Risk Reduction: 19 Countries in Perspective, M.H. Glantz, Editor., Springer International Publishing. Cham, 159-179.
Nguyen-Thi-Lan H., Fahad S., Nguyen-Anh T., Tran-Thi-Thu H., Nguyen-Hong C., To-The N., 2021. Assessment of farm households' perception, beliefs and attitude toward climatic risks: A case study of rural Vietnam. Plos one, 16(12), e0258598.
Oliveira S., Rocha J., Sá A., 2021. Wildfire risk modeling. Current Opinion in Environmental Science & Health, 23, 100274.
Peng L., Cai Z., Heidari A.A., Zhang L., Chen H., 2023. Hierarchical Harris hawks optimizer for feature selection. Journal of Advanced Research. Doi: 10.1016/j.jare.2023.01.014.
Pham T.T., Nguyen T.-D., Tham H.T., Truong T.N., Lam-Dao N., Nguyen-Huy T., 2021. Specifying the relationship between land use/land cover change and dryness in central Vietnam from 2000 to 2019 using Google Earth Engine. Journal of Applied Remote Sensing, 15(2), 024503-024503.
Phan D.C., Trung T.H., Truong V.T., Sasagawa T., Vu T.P.T., Bui D.T., Hayashi M., Tadono T., Nasahara K.N., 2021. First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam. Scientific reports, 11(1), 1-20.
Pimont F., Dupuy J.-L., Linn R., 2012. Coupled slope and wind effects on fire spread with influences of fire size: a numerical study using FIRETEC. International journal of wildland fire, 21(7), 828-842.
Pourghasemi H.R., Gayen A., Lasaponara R., Tiefenbacher J.P., 2020. Application of learning vector quantization and different machine learning techniques to assessing forest fire influence factors and spatial modelling. Environmental Research, 184, 109321.
Rihan M., Bindajam A.A., Talukdar S., Naikoo M.W., Mallick J., Rahman A., 2023. Forest Fire Susceptibility Mapping with Sensitivity and Uncertainty Analysis Using Machine Learning and Deep Learning Algorithms. Advances in Space Research, 72(2), 426-443.
Robinne F.-N., Parisien M.-A., Flannigan M., 2016. Anthropogenic influence on wildfire activity in Alberta, Canada. International Journal of Wildland Fire, 25(11), 1131-1143.
Rouet-Leduc J., Pe'er G., Moreira F., Bonn A., Helmer W., Shahsavan Zadeh S.A., Zizka A., van der Plas F., 2021. Effects of large herbivores on fire regimes and wildfire mitigation. Journal of Applied Ecology, 58(12), 2690-2702.
Sachdeva S., Bhatia T., Verma A., 2018. GIS-based evolutionary optimized Gradient Boosted Decision Trees for forest fire susceptibility mapping. Natural Hazards, 92, 1399-1418.
Sagi O., Rokach L., 2018. Ensemble learning: A survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1249.
Sivrikaya F., Küçük Ö., 2022. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecological Informatics, 68, 101537.
Slijepcevic A., Anderson W.R., Matthews S., Anderson D.H., 2018. An analysis of the effect of aspect and vegetation type on fine fuel moisture content in eucalypt forest. International Journal of Wildland Fire, 27(3), 190-202.
Storey M.A., Price O.F., 2022a. Prediction of air quality in Sydney, Australia as a function of forest fire load and weather using Bayesian statistics. Plos one, 17(8), e0272774.
Storey M.A., Price O.F., 2022b. Statistical modelling of air quality impacts from individual forest fires in New South Wales, Australia. Natural Hazards and Earth System Sciences, 22(12), 4039-4062.
Takaku J., Tadono T., 2009. PRISM on-orbit geometric calibration and DSM performance. IEEE Transactions on Geoscience and remote Sensing, 47(12), 4060-4073.
Tavakol A., Rahmani V., Harrington J., 2020. Temporal and spatial variations in the frequency of compound hot, dry, and windy events in the central United States. Scientific reports, 10(1), 1-13.
Tehrany M.S., Jones S., Shabani F., Martínez-Álvarez F., Tien Bui D., 2019. A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multisource geospatial data. Theoretical and Applied Climatology, 137, 637-653.
Teng J., Xia S., Liu Y., Yu X., Duan H., Xiao H., Zhao C., 2021. Assessing habitat suitability for wintering geese by using Normalized Difference Water Index (NDWI) in a large floodplain wetland, China. Ecological Indicators, 122, 107260.
Thach N.N., Dang B.T.N., Pham X.C., Nguyen H.T., Bui T.H., Hoang N.D., Bui D.T., 2018. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological Informatics, 46, 74-85.
Tri D.Q., Tran T.D., Truong D.D., 2019. Application of meteorological and hydrological drought indices to establish drought classification maps of the Ba River Basin in Vietnam. Hydrology, 6(2), 49.
Truong D.D., Tri D.Q., 2021. Evaluation of Economic Damage Caused by Drought in Central Region Vietnam: A Case Study of Phu Yen Province. Economic and Environmental Geology, 54(6), 649-657.
Truong T.X., Nhu V.-H., Phuong D.T.N., Nghi L.T., Hung N.N., Hoa P.V., Tien Bui D., 2023a. A new approach based on Tensorflow Deep Neural Networks and GIS for spatial prediction of forest fire danger in tropical areas. Remote Sens., 15(14), 3458.
Truong T.X., Trung N.V., Anh T.V., Khoa P.V., Hanh T.H., Viet-Ha N., Trong N.G., Nghi L.T., Phuong D.T.N., Diem Hang C.T., 2023b. Research and build new deep learning models using remote sensing and geoinformatics data for detecting and predicting forest fire risk. Hanoi University of Mining and Geology, Hanoi, Vietnam. Project Report B2021-MDA-13, 120p.
Tuyen T.T., Jaafari A., Yen H.P.H., Nguyen-Thoi T., Van Phong T., Nguyen H.D., Van Le H., Phuong T.T.M., Nguyen S.H., Prakash I., 2021. Mapping forest fire susceptibility using spatially explicit ensemble models based on the locally weighted learning algorithm. Ecological Informatics, 63, 101292.
Van Le H., Hoang D.A., Tran C.T., Nguyen P.Q., Hoang N.D., Amiri M., Ngo T.P.T., Nhu H.V., Van Hoang T., Bui D.T., 2021. A new approach of deep neural computing for spatial prediction of wildfire danger at tropical climate areas. Ecological Informatics, 63, 101300.
Xie Y., Peng M., 2019. Forest fire forecasting using ensemble learning approaches. Neural Computing and Applications, 31(9), 4541-4550.
Zheng Z., Huang W., Li S., Zeng Y., 2017. Forest fire spread simulating model using cellular automaton with extreme learning machine. Ecological Modelling, 348, 33-43.
Zhu Q., Liu Y., Jia R., Hua S., Shao T., Wang B., 2018. A numerical simulation study on the impact of smoke aerosols from Russian forest fires on the air pollution over Asia. Atmospheric Environment, 182, 263-274.