Evaluation of the Global Satellite Mapping of Precipitation (GSMaP) data on sub-daily rainfall patterns in Vietnam

Authors

  • Thanh-Hoa Pham-Thi Department of Geography, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo192-0397, Japan
  • Jun Matsumoto 1-Department of Geography, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo192-0397, Japan; 2-Department of Coupled-Ocean-Atmosphere-Land Processes Research, Japan Agency for Marine Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
  • Masato I. Nodzu Department of Geography, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo192-0397, Japan

DOI:

https://doi.org/10.15625/2615-9783/16594

Keywords:

GSMaP, Sub-daily rainfall, Seasonal variation, Vietnam

Abstract

This study aims to evaluate the performance of Global Satellite Mapping of Precipitation (GSMaP) data in observing the sub-daily rainfall patterns in Vietnam using synoptic gauge measurements considering seasonal variations in rainfall. Differences in the estimations of the three GSMaP products, including the standard version
7 (MVKv7) and two gauge-calibrated versions 6 and 7 (GAUv6 and GAUv7), were clarified based on rainfall characteristic parameters and statistical indices. The present study clarified that the contribution of sub-daily rainfall in Vietnam was higher during the afternoon than at other times, predominantly in the Central Highlands and Southern Plain, while it occurred most often during the evening to early morning in northern regions. Distinct regional features were also identified along the central coast. Most of the summer afternoon maximum fell in the western mountainous area, while the eastern coastal plain experienced an insignificant amount of rainfall. As rainfall characteristics varied with seasons and regions, the performance of GSMaP demonstrated this variation quite well compared to in-situ observations. However, GSMaP still exhibited high biases in rainy season and topographically heterogeneous areas, especially in the northern regions where sub-daily rainfall cycles had large variations. The standard GSMaP (MVK) product illustrated an afternoon peak better than the gauge-calibrated (GAU) product, which suggests that utilizing the MVK in the Central Highlands and Southern Plain and the GAU over central coastal regions would be appropriate when considering the characteristics of sub-daily precipitation.

Downloads

Download data is not yet available.

References

Bao X., Zhang F., Sun J., 2011. Diurnal variations of warm-season precipitation east of the Tibetan Plateau over China. Mon. Wea. Rev., 139, 2790-2810.

Battaglia A., Mroz K., Watters D., Ardhuin F., 2020. GPM-derived climatology of attenuation due to clouds and precipitation at Ka-band. IEEE T. Geosci., Remote., 58, 1812-1820.

Carbone R.E., Tuttle J.D., Ahijevych D.A., Trier S.B., 2002. Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 2033-2056.

Chen G., Sha W., Iwasaki T., 2009. Diurnal variation of precipitation over southeastern China: Spatial distribution and its seasonality. J. Geophys. Res., 114, D13103.

Chen G., Lan R., Zeng W., Pan H., Li W., 2018. Diurnal variations of rainfall in surface and satellite observations at the monsoon coast (South China). J. Climate, 31, 1703-1724.

Chen G., 2020. Diurnal cycle of the Asian summer monsoon: Air pump of the second kind. J. Climate, 33, 1747-1775.

Dai A., 2001. Global precipitation and thunderstorm frequencies. Part II: Diurnal variations. J. Climate, 14, 1112-1128.

Dinku T., Ceccato P., Grover‐Kopec E., Lemma M., Connor S.J., Ropelewski C.F., 2007. Validation of satellite rainfall products over East Africa’s complex topography. Int. J. Remote Sens., 28, 1503-1526.

Gao Y.C., Liu M.F., 2013. Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau. Hydrol. Earth Syst. Sci., 17, 837-849.

Guo H., Chen S., Bao A., Hu J., Gebregiorgis A., Xue X., Zhang X., 2015. Inter-comparison of high-resolution satellite precipitation products over Central Asia. Remote Sensing, 7, 7181-7211.

Hastings D.A., Dunbar P.K., 1999. Global Land One-kilometer Base Elevation (GLOBE) digital elevation model, version 1.0. National Oceanic and Atmospheric Administration, National Geographysical Data Center, digital media. Available online at https://iridl.ldeo.columbia.edu/SOURCES/.NOAA/.NGDC/.GLOBE/topo/datafiles.html. Accessed 12 May 2021.

He H., Zhang F., 2010. Diurnal variations of warm-season precipitation over Northern China. Mon. Wea. Rev., 138, 1017-1025.

Hirose M., Nakamura K., 2005. Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM Precipitation Radar. J. Geophys. Res., 110, D05106.

Huang H.-L., Wang C.-C., Chen G.T.-J., Carbone R.E., 2010. The role of diurnal solenoidal circulation on propagating rainfall episodes near the eastern Tibetan Plateau. Mon. Wea. Rev., 138, 2975-2989.

Huffman G.J., Bolvin D.T., Nelkin E.J., Wolff D.B., Adler R.F., Gu G., Hong Y., Bowman K.P., Stocker E.F., 2007. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-sensor precipitation estimates at fine scales. J. Hydrol., 8, 38-55.

Joyce R.J., Janowiak J.E., Arkin P.A., Xie P., 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487-503.

Kubota T., Ushio T., Shige S., Kida S., Kachi M., Okamoto K., 2009. Verification of high-resolution satellite-based rainfall estimates around Japan using a gauge-calibrated ground-radar dataset. J. Meteor. Soc. Japan, 87A, 203-222.

Kummerow C., Simpson J., Thiele O., Barnes W., Chang A.T.C., Stocker E., Adler R.F., Hou A., Kakar R., Wentz F., Ashcroft P., Kozu T., Hong Y., Okamoto K., Iguchi T., Kuroiwa H., Im E., Haddad Z., Huffman G., Ferrier B., Olson W.S., Zipser E., Smith E.A., Wilheit T.T., North G., Krishnamurti T., Nakamura K., 2000. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965-1982.

Lewis E., Fowler H.J., Alexander L., Dunn R., McClean F., Barbero R., Guerreiro S., Li X.F., Blenkinsop S., 2019. GSDR: a global sub-daily rainfall dataset. J. Climate, 32, 4715-4729.

Li J., Yu R., Zhou T., 2008. Seasonal variation of the diurnal cycle of rainfall in southern contiguous China. J. Climate, 21, 6036-6043.

Matsumoto J., 1997. Seasonal transition of summer rainy season over indochina and adjacent monsoon region. Adv. Atmos. Sci., 14, 231-245.

Mega T., Shige S., 2016. Improvements of Rain/No-Rain classification methods for microwave radiometer over coasts by dynamic surface-type classification. J. Atmos. Ocean. Tech., 33, 1257-1270.

Mega T., Ushio T., Takahiro M., Kubota T., Kachi M., Oki R., 2019. Gauge-adjusted global satellite mapping of precipitation. IEEE T. Geosci., Remote., 57, 1928-1935.

Minobe S., Park J.H., Virts K.S., 2020. Diurnal cycles of precipitation and lightning in the tropics observed by TRMM3G68, GSMaP, LIS, and WWLLN. J. Climate, 33, 4293-4313.

Nesbitt S.W., Zipser E.J., 2003. The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 1456-1475.

Ngo-Duc T., Matsumoto J., Kamimera H., Bui H.-H., 2013. Monthly adjustment of Global Satellite Mapping of Precipitation (GSMaP) data over the VuGia-ThuBon river basin in Central Vietnam using an artificial neural network. Hydrol. Res. Lett., 7, 85-90.

Nguyen-Le D., Matsumoto J., Ngo-Duc T., 2014. Climatological onset date of summer monsoon in Vietnam. Int. J. Climatol., 34, 3237-3250.

Nguyen-Le D., Matsumoto J., Ngo-Duc T., 2015. Onset of the rainy seasons over the eastern Indochina Peninsula. J. Climate., 28, 5645-5666.

Nguyen-Le D., Matsumoto J., 2016. Delayed withdrawal of the autumn rainy season over central Vietnam in recent decades. Int. J. Climatol., 36, 3002-3019.

Nodzu M.I., Matsumoto J., Trinh-Tuan L., Ngo-Duc T., 2019. Precipitation estimation performance by Global Satellite Mapping and its dependence on wind over northern Vietnam. Prog. Earth Planet. Sci., 6, 58.

Ohsawa T., Ueda H., Hayashi T., Watanabe A., Matsumoto J., 2001. Diurnal variations of convective activity and rainfall in tropical Asia. Jour. Met. Soc. Japan. Ser. II, 79, 333-352.

Oki T., Musiake K., 1994. Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor., 33, 1445-1463.

Pfeifroth U., Trentmann J., Fink A.H., Ahrens B., 2016. Evaluating Satellite-Based Diurnal Cycles of Precipitation in the African Tropics. J. Appl. Meteor. Climatol., 55, 23-39.

Pham-Thi T.-H., Matsumoto J., 2021. Intercomparison of Global Satellite Mapping of Precipitation (GSMaP) using rain-gauge observations based on multiple temporal resolutions in Vietnam. Geog. Reps. Tokyo Metrop. Univ., 56, 33-44.

Shige, S., Kida, S., Ashiwake, H., Kubota, T., Aonashi, K., 2013. Improvement of TMI rain retrievals in mountainous areas. J. Appl. Meteor. Climatol. 52, 242-254.

Takahashi H.G., Fujinami H., Yasunari T., Matsumoto J., 2010. Diurnal rainfall pattern observed by Tropical Rainfall Measuring Mission Precipitation Radar (TRMM-PR) around the Indochina peninsula. J. Geophys. Res., 115, D07109.

Takahashi, H.G., 2013. Orographic low-level clouds of Southeast Asia during the cold surges of the winter monsoon. Atmos. Res., 131, 22-33.

Takahashi H.G., 2016. Seasonal and diurnal variations in rainfall characteristics over the Tropical Asian monsoon region using TRMM-PR data. SOLA, 12A, 22-27.

Trinh-Tuan L., Matsumoto J., Ngo-Duc T., Nodzu M.I., Inoue T., 2019. Evaluation of satellite precipitation products over Central Vietnam. Prog. Earth Planet. Sci., 6, 54.

Ushio T., Sasashige K., Kubota T., Shige S., Okamoto K., Aonashi K., Inoue T., Takahashi N., Iguchi T., Kachi M., Oki R., Morimoto T., Kawasaki Z.-I., 2009. A Kalman filter approach to the Global Satellite Mapping of Precipitation (GSMaP) from combined passive microwave and infrared radiometric data. Jour. Met. Soc. Japan, 87A, 137-151.

Wang B., 2002. Rainy season of the Asian-Pacific summer monsoon. J. Climate, 15, 386-398.

Watters D., Battaglia A., 2019. The summertime diurnal cycle of precipitation derived from IMERG. Remote Sensing, 11, 1781.

Xiao C., Yuan W., Yu R., 2018. Diurnal cycle of rainfall in amount, frequency, intensity, duration, and the seasonality over the UK. Int. J. Climatol., 38, 4967-4978.

Xu W., Zipser E.J., 2011. Diurnal variations of precipitation, deep convection, and lightning over and east of the eastern Tibetan Plateau. J. Climate, 24, 448-465.

Yokoi S., Matsumoto J., 2008. Collaborative effects of cold surge and tropical depression-type disturbance on heavy rainfall in Central Vietnam. Mon. Wea. Rev., 136, 3275-3287.

Yu R., Xu Y., Zhou T., Li J., 2007. Relation between rainfall duration and diurnal variation in the warm season precipitation over central eastern China. Geophys. Res. Lett., 34, L13703.

Yuan W., Yu R., Zhang M., Lin W., Chen H., Li J., 2012. Regimes of diurnal variation of summer rainfall over subtropical East Asia. J. Climate, 25, 3307-3320.

Downloads

Published

2021-10-02

How to Cite

Pham-Thi, T.-H., Matsumoto, J., & Nodzu, M. I. (2021). Evaluation of the Global Satellite Mapping of Precipitation (GSMaP) data on sub-daily rainfall patterns in Vietnam. Vietnam Journal of Earth Sciences. https://doi.org/10.15625/2615-9783/16594

Issue

Section

Articles