Accuracy assessment of extreme learning machine in predicting soil compression coefficient
Author affiliations
DOI:
https://doi.org/10.15625/0866-7187/42/3/14999Keywords:
Compression coefficient, extreme machine learning, Monte Carlo simulationsAbstract
The compression coefficient (Cc) is an important soil mechanical parameter that represents soil compressibility in the process of consolidation. In this study, a machine learning derived model, namely extreme learning algorithm (ELM), was used to predict the Cc of soil. A total of 189 experimental results were used and randomly divided to construct the training and testing parts for the development and validation of ELM. Monte Carlo approach was applied to take into account the random sampling of samples constituting the training dataset. A number of 13 input parameters reflecting the experiment were used as the input variables to predict the output Cc. Several statistical criteria, such as mean absolute error (MAE), root mean square error (RMSE), correlation coefficient (R) and the Monte Carlo convergence estimator were used to assess the performance of ELM in predicting the Cc of soil. The results showed that ELM had a strong capacity to predict the Cc of soil, with the R value > 0.95. The convergence of results, as well as the capability of ELM were fully investigated to understand the advantage of using ELM as a predictor.
Downloads
References
Armaghani D.J., Mohamad E.T., Hajihassani M., Yagiz S., Motaghedi H., 2016. Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Engineering with Computers, 32, 189–206.
Bui D.T., Hoang N.-D., Nhu V.-H., 2019. A swarm intelligence-based machine learning approach for predicting soil shear strength for road construction: a case study at Trung Luong National Expressway Project (Vietnam). Engineering with Computers, 35, 955–965.
Chen J., de Hoogh K., Gulliver J., Hoffmann B., Hertel O., Ketzel M., Bauwelinck M., van Donkelaar A., Hvidtfeldt U.A., Katsouyanni K., 2019. A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide. Environment international, 130, 104934.
Collins G.S., Moons K.G., 2019. Reporting of artificial intelligence prediction models. The Lancet, 393, 1577–1579.
Dao D.V., Adeli H., Ly H.-B., Le, L.M., Le, V.M., Le, T.-T., Pham, B.T., 2020a. A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation. Sustainability, 12, 830. https://doi.org/10.3390/su12030830.
Dao D.V., Jaafari A., Bayat M., Mafi-Gholami D., Qi C., Moayedi H., Phong T.V., Ly H.-B., Le T.-T., Trinh P.T., Luu C., Quoc N.K., Thanh B.N., Pham B.T., 2020b. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. CATENA, 188, 104451. https://doi.org/10.1016/j.catena.2019.104451.
Dao D.V., Ly H.-B., Vu H.-L.T., Le T.-T., Pham B.T., 2020c. Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete. Materials, 13, 1072.
Das B.M., Sobhan K., 2013. Principles of geotechnical engineering. Cengage learning.
Huang G.-B., Zhou H., Ding X., Zhang R., 2011. Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42, 513–529.
Huang G.-B., Zhu Q.-Y., Siew C.-K., 2004. Extreme learning machine: a new learning scheme of feedforward neural networks, in: 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541). IEEE, 985–990.
Huang G.-B., Zhu Q.-Y., Siew C.-K., 2006. Extreme learning machine: theory and applications. Neurocomputing, 70, 489–501.
Khandelwal M., Marto A., Fatemi S.A., Ghoroqi M., Armaghani D.J., Singh T., Tabrizi O., 2018. Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Engineering with Computers, 34, 307–317.
Khosravi K., Daggupati P., Alami M.T., Awadh S.M., Ghareb M.I., Panahi M., Pham B.T., Rezaie F., Qi C., Yaseen Z.M., 2019. Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq. Computers and Electronics in Agriculture, 167, 105041. https://doi.org/10.1016/j.compag.2019.105041.
Le T.-T., Pham B.T., Ly H.-B., Shirzadi A., Le L.M., 2020. Development of 48-hour Precipitation Forecasting Model using Nonlinear Autoregressive Neural Network, in: Ha-Minh, C., Dao, D.V., Benboudjema, F., Derrible, S., Huynh, D.V.K., Tang, A.M. (Eds.), CIGOS 2019, Innovation for Sustainable Infrastructure, Lecture Notes in Civil Engineering. Springer, Singapore, 1191–1196. https://doi.org/10.1007/978-981-15-0802-8_191.
Ly H.-B., Le L.M., Duong H.T., Nguyen T.C., Pham T.A., Le T.-T., Le V.M., Nguyen-Ngoc L., Pham B.T., 2019a. Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections. Applied Sciences, 9, 2258. https://doi.org/10.3390/app9112258.
Ly H.-B., Le L.M., Phi L.V., Phan V.-H., Tran V.Q., Pham B.T., Le T.-T., Derrible S., 2019b. Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors, 19, 4941. https://doi.org/10.3390/s19224941.
Ly H.-B., Le T.-T., Le L.M., Tran V.Q., Le V.M., Vu H.-L.T., Nguyen Q.H., Pham B.T., 2019c. Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Applied Sciences, 9, 5458. https://doi.org/10.3390/app9245458.
Ly H.-B., Monteiro E., Le T.-T., Le V.M., Dal M., Regnier G., Pham B.T., 2019d. Prediction and Sensitivity Analysis of Bubble Dissolution Time in 3D Selective Laser Sintering Using Ensemble Decision Trees. Materials, 12, 1544.
Ly H.-B., Pham B.T., Dao D.V., Le V.M., Le L.M., Le T.-T., 2019e. Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete. Applied Sciences, 9, 3841. https://doi.org/10.3390/app9183841.
Michie D., Spiegelhalter D.J., Taylor C., 1994. Machine learning. Neural and Statistical Classification, 13, 1–298.
Moayedi H., Gör M., Lyu Z., Bui D.T., 2020a. Herding Behaviors of grasshopper and Harris hawk for hybridizing the neural network in predicting the soil compression coefficient. Measurement, 152, 107389.
Moayedi H., Tien Bui D., Dounis A., Ngo P.T.T., 2020b. A Novel Application of League Championship Optimization (LCA): Hybridizing Fuzzy Logic for Soil Compression Coefficient Analysis. Applied Sciences, 10, 67.
Mohamad E.T., Armaghani D.J., Hasanipanah M., Murlidhar B.R., Alel M.N.A., 2016. Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environmental Earth Sciences, 75, 174.
Mohamad E.T., Armaghani D.J., Momeni E., Yazdavar A.H., Ebrahimi M., 2018. Rock strength estimation: a PSO-based BP approach. Neural Computing and Applications, 30, 1635–1646.
Mohamad E.T., Hajihassani M., Armaghani D.J., Marto A., 2012. Simulation of blasting-induced air overpressure by means of artificial neural networks. Int. Rev. Model. Simul, 5, 2501–2506.
Momeni E., Nazir R., Armaghani D.J., Maizir H., 2015. Application of Artificial Neural Network for Predicting Shaft and Tip Resistances of Concrete Piles. Earth Sciences Research Journal, 19, 85–93. https://doi.org/10.15446/esrj.v19n1.38712.
Nguyen H.Q., Ly,H.-B., Tran V.Q., Nguyen T.-A., Le T.-T., Pham B.T., 2020. Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression. Materials, 13, 1205.
Nguyen M.D., Pham B.T., Tuyen T.T., Hai Yen H.P., Prakash I., Vu T.T., Chapi K., Shirzadi A., Shahabi H., Dou J., Quoc N.K., Bui D.T., 2019. Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. The Open Construction and Building Technology Journal, 13. https://doi.org/10.2174/1874836801913010178.
Nizar A., Dong Z., Wang Y., 2008. Power utility nontechnical loss analysis with extreme learning machine method. IEEE Transactions on Power Systems, 23, 946–955.
Pham B.T., Le L.M., Le T.-T., Bui K.-T.T., Le V.M., Ly H.-B., Prakash I., 2020a. Development of advanced artificial intelligence models for daily rainfall prediction. Atmospheric Research, 237, 104845. https://doi.org/10.1016/j.atmosres.2020.104845.
Pham B.T., Nguyen M.D., Bui K.-T.T., Prakash I., Chapi K., Bui D.T., 2019a. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. CATENA, 173, 302–311. https://doi.org/10.1016/j.catena.2018.10.004.
Pham B.T., Nguyen M.D., Dao D.V., Prakash I., Ly H.-B., Le T.-T., Ho L.S., Nguyen K.T., Ngo T.Q., Hoang V., Son L.H., Ngo H.T.T., Tran H.T., Do N.M., Van Le H., Ho H.L., Tien Bui D., 2019b. Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of The Total Environment, 679, 172–184. https://doi.org/10.1016/j.scitotenv.2019.05.061.
Pham B.T., Nguyen M.D., Ly H.-B., Pham T.A., Hoang V., Van Le H., Le T.-T., Nguyen H.Q., Bui G.L., 2020b. Development of Artificial Neural Networks for Prediction of Compression Coefficient of Soft Soil, in: Ha-Minh C., Dao D.V., Benboudjema F., Derrible S., Huynh D.V.K., Tang A.M. (Eds.), CIGOS 2019, Innovation for Sustainable Infrastructure, Lecture Notes in Civil Engineering. Springer, Singapore, 1167–1172. https://doi.org/10.1007/978-981-15-0802-8_187.
Pham B.T., Nguyen-Thoi T., Ly H.-B., Nguyen M.D., Al-Ansari N., Tran V.-Q., Le T.-T., 2020c. Extreme Learning Machine Based Prediction of Soil Shear Strength: A Sensitivity Analysis Using Monte Carlo Simulations and Feature Backward Elimination. Sustainability, 12, 2339.
Qi C., Ly H.-B., Chen Q., Le T.-T., Le V.M., Pham B.T., 2020. Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere, 244, 125450. https://doi.org/10.1016/j.chemosphere.2019.125450.
Rivera J.I., Bonilla C.A., 2020. Predicting soil aggregate stability using readily available soil properties and machine learning techniques. Catena, 187, 104408.
Thanh T.T.M., Ly H.-B., Pham B.T., 2020. A Possibility of AI Application on Mode-choice Prediction of Transport Users in Hanoi, in: Ha-Minh, C., Dao, D.V., Benboudjema, F., Derrible, S., Huynh, D.V.K., Tang, A.M. (Eds.), CIGOS 2019, Innovation for Sustainable Infrastructure. Springer Singapore, Singapore, 1179–1184. https://doi.org/10.1007/978-981-15-0802-8_189.