Shallow landslide susceptibility mapping: A comparison between classification and regression tree and reduced error pruning tree algorithms

Bahareh Ghasemian, Dawod Talebpoor Asl, Binh Thai Pham, Mohammadtghi Avand, Huu Duy Nguyen, Saeid Janizadeh
Author affiliations

Authors

  • Bahareh Ghasemian Department of Geomorphology, Faculty of Humanities, University of Mohaghegh Ardabili, Ardabil, Iran
  • Dawod Talebpoor Asl Department of Geomorphology, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
  • Binh Thai Pham Department of Geotechnical Engineering, University of Transport Technology, 54 Trieu Khuc, Thanh Xuan, Hanoi, Vietnam
  • Mohammadtghi Avand Department of Watershed Management Engineering, College of Natural Resources, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran
  • Huu Duy Nguyen Faculty of Geography, VNU University of Science, 334 Nguyen Trai, Hanoi, Vietnam
  • Saeid Janizadeh Department of Watershed Management Engineering, College of Natural Resources, Tarbiat Modares University, Tehran, P.O. Box 14115-111, Iran

DOI:

https://doi.org/10.15625/0866-7187/42/3/14952

Keywords:

Shallow landslide, machine learning, information gain ratio, classifier, GIS, Iran

Abstract

Shallow landslides through land degrading not only lead to threat the properly and life of human but they also may produce huge ecosystem damages. The aim of this study was to compare the performance of two decision tree machine learning algorithms including classification and regression tree (CART) and reduced error pruning tree (REPTree) for shallow landslide susceptibility mapping in Bijar, Kurdistan province, Iran. We first used 20 conditioning factors and then they were tested by information gain ratio (IGR) technique to select the most important ones. We then constructed a geodatabase based on the selected factors along with a total of 111 landslide locations with a ratio of 80/20 (for calibration/validation). The performance of the models was checked by the true positive rate (TP Rate), false positive rate (FP Rate), precision, recall, F1-Measure, Kappa, mean absolute error, and area under the receiver operatic curve (AUC). Results of IGR specified that the slope angle and TWI had the most contribution to shallow landslide occurrence in the study area. Moreover, results concluded that although these models had a high goodness-of-fit and prediction accuracy, the CART model (AUC=0.856) outperformed the REPTree model (AUC=0.837). Therefore, the CART model can be used as a promising tool and also as a base classifier to hybrid with optimization algorithms and Meta classifiers for spatial prediction of shallow landslide-prone areas.

Downloads

Download data is not yet available.

References

Abedini M., Ghasemian B., Shirzadi A., Bui D.T., 2019. A comparative study of support vector machine and logistic model tree classifiers for shallow landslide susceptibility modeling. Environmental Earth Sciences, 78, 560.

Ahmadlou M., Karimi M., Alizadeh S., Shirzadi A., Parvinnezhad D., Shahabi H., Panahi M., 2018. Flood susceptibility assessment using integration of adaptive network-based fuzzy inference system (ANFIS) and biogeography-based optimization (BBO) and BAT algorithms (BA). Geocarto International, 1–38.

Barbon Jr S., Barbon A., Mantovani R.G., Barbin D.F., 2016. Comparison of SVM and REPTree for classification of poultry quality. Proceedings of the Modelling, Simulation and Identification/Intelligent Systems and Control (MSI 2016), DOI: 10.2316/P.2016.840-039.

Barik M., Adam J., Barber M., Muhunthan B., 2017. Improved landslide susceptibility prediction for sustainable forest management in an altered climate. Engineering geology, 230, 104–117.

Bloechl A., Braun B., 2005. Economic assessment of landslide risks in the Swabian Alb, Germany - Research framework and first results of homeowners' and experts' surveys. Natural Hazards and Earth System Science, 5.

Breiman L., Friedman J., Olshen R., Stone C., 1984. Classification and regression trees. Wadsworth & Brooks. Cole Statistics/Probability Series.

Bui D.T., Panahi M., Shahabi H., Singh V.P., Shirzadi A., Chapi K., Khosravi K., Chen W., Panahi S., Li S., 2018. Novel hybrid evolutionary algorithms for spatial prediction of floods. Scientific reports, 8, 15364.

Chen W., 2016. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences, 75.

Chen W., Li W., Hou E., Zhao Z., Deng N., Bai H., Wang D., 2014. Landslide susceptibility mapping based on GIS and information value model for the Chencang District of Baoji, China. Arabian Journal of Geosciences, 7, 4499–4511.

Chen W., Li Y., Tsangaratos P., Shahabi H., Ilia I., Xue W., Bian H., 2020a. Groundwater Spring Potential Mapping Using Artificial Intelligence Approach Based on Kernel Logistic Regression, Random Forest, and Alternating Decision Tree Models. Applied Sciences, 10, 425.

Chen W., Li Y., Xue W., Shahabi H., Li S., Hong H., Wang X., Bian H., Zhang S., Pradhan B., 2020b. Modeling flood susceptibility using data-driven approaches of naïve bayes tree, alternating decision tree, and random forest methods. Science of The Total Environment, 701, 134979.

Chen W., Panahi M., Pourghasemi H.R., 2017a. Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modelling. CATENA, 157, 310–324.

Chen W., Shahabi H., Shirzadi A., Hong H., Akgun A., Tian Y., Liu J., Zhu A.-X., Li S., 2019a. Novel hybrid artificial intelligence approach of bivariate statistical-methods-based kernel logistic regression classifier for landslide susceptibility modeling. Bulletin of Engineering Geology and the Environment, 78, 4397–4419.

Chen W., Shahabi H., Shirzadi A., Li T., Guo C., Hong H., Li W., Pan D., Hui J., Ma M., Xi M., Ahmad B.B., 2018a. A Novel Ensemble Approach of Bivariate Statistical Based Logistic Model Tree Classifier for Landslide Susceptibility Assessment. Geocarto International, 1–32.

Chen W., Shahabi H., Zhang S., Khosravi K., Shirzadi A., Chapi K., Pham B., Zhang T., Zhang L., Chai H., 2018b. Landslide susceptibility modeling based on gis and novel bagging-based kernel logistic regression. Applied Sciences, 8, 2540.

Chen W., Shirzadi A., Shahabi H., Ahmad B.B., Zhang S., Hong H., Zhang N., 2017b. A novel hybrid artificial intelligence approach based on the rotation forest ensemble and naïve Bayes tree classifiers for a landslide susceptibility assessment in Langao County, China. Geomatics, Natural Hazards and Risk, 8, 1955–1977.

Chen W., Xie X., Wang J., Pradhan B., Hong H., Bui D.T., Duan Z., Ma J., 2017c. A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151, 147–160.

Chen W., Zhao X., Shahabi H., Shirzadi A., Khosravi K., Chai H., Zhang S., Zhang L., Ma J., Chen Y., 2019b. Spatial prediction of landslide susceptibility by combining evidential belief function, logistic regression and logistic model tree. Geocarto International, 1–25.

Chen W., Zhao X., Tsangaratos P., Shahabi H., Ilia I., Xue W., Wang X., Ahmad B.B., 2020c. Evaluating the usage of tree-based ensemble methods in groundwater spring potential mapping. Journal of Hydrology, 124602.

Choubin B., Abdolshahnejad M., Moradi E., Querol X., Mosavi A., Shamshirband S., Ghamisi P., 2020. Spatial hazard assessment of the PM10 using machine learning models in Barcelona, Spain. Science of The Total Environment, 701, 134474.

Choubin B., Darabi H., Rahmati O., Sajedi-Hosseini F., Kløve B., 2018a. River suspended sediment modelling using the CART model: A comparative study of machine learning techniques. Science of the Total Environment, 615, 272–281.

Choubin B., Moradi E., Golshan M., Adamowski J., Sajedi-Hosseini F., Mosavi A., 2019a. An ensemble prediction of flood susceptibility using multivariate discriminant analysis, classification and regression trees, and support vector machines. Science of the Total Environment, 651, 2087–2096.

Choubin B., Mosavi A., Alamdarloo E.H., Hosseini F.S., Shamshirband S., Dashtekian K., Ghamisi P., 2019b. Earth fissure hazard prediction using machine learning models. Environmental research, 179, 108770.

Choubin B., Rahmati O., Soleimani F., Alilou H., Moradi E., Alamdari N., 2019c. Regional groundwater potential analysis using classification and regression trees, Spatial modeling in GIS and R for earth and environmental sciences. Elsevier, 485–498.

Choubin B., Zehtabian G., Azareh A., Rafiei-Sardooi E., Sajedi-Hosseini F., Kişi Ö., 2018b. Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches. Environmental Earth Sciences, 77, 314.

Cloke H., Pappenberger F., 2009. Ensemble flood forecasting: A review. Journal of hydrology, 375, 613–626.

Devasena C.L., 2014. Comparative analysis of random forest, REP tree and J48 classifiers for credit risk prediction. International Journal of Computer Applications, 0975–8887.

Elomaa, T., Kaariainen, M., 2001. An analysis of reduced error pruning. Journal of Artificial Intelligence Research, 15, 163–187.

Ercanoglu M., Gokceoglu C., 2004. Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology, 75, 229–250.

Fürnkranz J., Widmer G., 1994. Incremental reduced error pruning, Machine Learning Proceedings 1994. Elsevier, 70–77.

Guzzetti F., Reichenbach P., Ardizzone F., Cardinali M., Galli M., 2006. Estimating the quality of landslide susceptibility models. Geomorphology, 81, 166–184.

Han J., Kamber M., 2001. Data mining concepts and techniques San Francisco Moraga Kaufman.

Hemasinghe H., Rangali R.S.S., Deshapriya N.L., Samarakoon L., 2018. Landslide susceptibility mapping using logistic regression model (a case study in Badulla District, Sri Lanka). Procedia Engineering, 212, 1046–1053.

Hess K.R., Abbruzzese M.C., Lenzi R., Raber M.N., Abbruzzese J.L., 1999. Classification and regression tree analysis of 1000 consecutive patients with unknown primary carcinoma. Clinical Cancer Research, 5, 3403–3410.

Hong H., Chen W., Xu C., Youssef D.A., Pradhan B., Tien Bui D., 2016. Rainfall-induced landslide susceptibility assessment at the Chongren area (China) using frequencyratio, certainty factor, and index of entropy. Geocarto International, 32, 139–154.

Hong H., Panahi M., Shirzadi A., Ma T., Liu J., Zhu A.-X., Chen W., Kougias I., Kazakis N., 2018. Flood susceptibility assessment in Hengfeng area coupling adaptive neuro-fuzzy inference system with genetic algorithm and differential evolution. Science of The Total Environment, 621, 1124–1141.

Jaafari A., Najafi A., Rezaeian J., Sattarian A., Ghajar I., 2015. Planning road networks in landslide-prone areas: A case study from the northern forests of Iran. Land Use Policy, 47, 198–208.

Jaafari A., Zenner E.K., Pham B.T., 2018. Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. Ecological Informatics, 43, 200–211.

Khosravi K., Melesse A.M., Shahabi H., Shirzadi A., Chapi K., Hong H., 2019a. Flood susceptibility mapping at Ningdu catchment, China using bivariate and data mining techniques, Extreme Hydrology and Climate Variability. Elsevier, 419–434.

Khosravi K., Shahabi H., Pham B.T., Adamowski J., Shirzadi A., Pradhan B., Dou J., Ly H.-B., Gróf G., Ho H.L., 2019b. A comparative assessment of flood susceptibility modeling using Multi-Criteria Decision-Making Analysis and Machine Learning Methods. Journal of Hydrology, 573, 311–323.

Kutlug Sahin E., Colkesen I., 2019. Performance analysis of advanced decision tree-based ensemble learning algorithms for landslide susceptibility mapping. Geocarto International, 1–23.

Le T.-T., Pham B.T., Ly H.-B., Shirzadi A., Le L.M., 2020. Development of 48-hour Precipitation Forecasting Model using Nonlinear Autoregressive Neural Network, CIGOS 2019, Innovation for Sustainable Infrastructure. Springer, 1191–1196.

Lee T.-S., Chiu C.-C., Chou Y.-C., Lu C.-J., 2006. Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis, 50, 1113–1130.

Lewis R.J., 2000. An introduction to classification and regression tree (CART) analysis, Annual meeting of the society for academic emergency medicine in San Francisco, California.

Loh W.Y., 2014. Classification and regression tree methods. Wiley StatsRef: Statistics Reference Online.

Miraki S., Zanganeh S.H., Chapi K., Singh V.P., Shirzadi A., Shahabi H., Pham B.T., 2019. Mapping groundwater potential using a novel hybrid intelligence approach. Water resources management, 33, 281–302.

Moore I., Burch G., 1986. Sediment transport capacity of sheet and rill flow: application of unit stream power theory. Water Resources Research, 22, 1350–1360.

Nguyen M.D., Pham B.T., Tuyen T.T., Yen H., Phan H., Prakash I., Vu T.T., Chapi K., Shirzadi A., Shahabi H., 2019a. Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. The Open Construction and Building Technology Journal, 13.

Nguyen P.T., Tuyen T.T., Shirzadi A., Pham B.T., Shahabi H., Omidvar E., Amini A., Entezami H., Prakash I., Phong T.V., 2019b. Development of a novel hybrid intelligence approach for landslide spatial prediction. Applied Sciences, 9, 2824.

Nguyen V.V., Pham B.T., Vu B.T., Prakash I., Jha S., Shahabi H., Shirzadi A., Ba D.N., Kumar, R., Chatterjee J.M., 2019c. Hybrid machine learning approaches for landslide susceptibility modeling. Forests, 10, 157.

Ozdemir A., Altural T., 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.

Pham B.T., Bui D.T., Prakash I., 2018a. Application of Classification and Regression Trees for Spatial Prediction of Rainfall-Induced Shallow Landslides in the Uttarakhand Area (India) Using GIS, Climate Change, Extreme Events and Disaster Risk Reduction. Springer, 159–170.

Pham B.T., Prakash I., Dou J., Singh S.K., Trinh P.T., Tran H.T., Le T.M., Van Phong T., Khoi D.K., Shirzadi A., 2019a. A novel hybrid approach of landslide susceptibility modelling using rotation forest ensemble and different base classifiers. Geocarto International, 1–25.

Pham B.T., Prakash I., Singh S.K., Shirzadi A., Shahabi H., Bui D.T., 2019b. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. Catena, 175, 203–218.

Pham B.T., Shirzadi A., Bui D.T., Prakash I., Dholakia M., 2018b. A hybrid machine learning ensemble approach based on a radial basis function neural network and rotation forest for landslide susceptibility modeling: A case study in the Himalayan area, India. International Journal of Sediment Research, 33, 157–170.

Pourghasemi H.R., Mohammady M., Pradhan B., 2012. Landslide susceptibility mapping using index of entropy and conditional probability models in GIS: Safarood Basin, Iran. Catena, 97, 71–84.

Quinlan J.R., 1986. Induction of decision trees. Machine learning, 1, 81–106.

Regmi A., Devkota K., Yoshida K., Pradhan B., Pourghasemi H.R., Kumamoto T., Akgun A., 2013. Application of frequency ratio, statistical index, and weights-of-evidence models and their comparison in landslide susceptibility mapping in Central Nepal Himalaya. Arabian Journal of Geoscience, 7.

Schlögel R., Marchesini I., Alvioli M., Reichenbach P., Rossi M., Malet J.-P., 2018. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models. Geomorphology, 301, 10–20.

Shafizadeh-Moghadam H., Valavi R., Shahabi H., Chapi K., Shirzadi A., 2018. Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of environmental management, 217, 1–11.

Shahabi H., Shirzadi A., Ghaderi K., Omidvar E., Al-Ansari N., Clague J.J., Geertsema M., Khosravi K., Amini A., Bahrami S., 2020. Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 12, 266.

Shirzadi A., Chapi K., Shahabi H., Solaimani K., Kavian A., Ahmad B.B., 2017a. Rock fall susceptibility assessment along a mountainous road: an evaluation of bivariate statistic, analytical hierarchy process and frequency ratio. Environmental Earth Sciences, 76.

Shirzadi A., Saro L., Joo O.H., Chapi K., 2012. A GIS-based logistic regression model in rock-fall susceptibility mapping along a mountainous road: Salavat Abad case study, Kurdistan, Iran. Natural hazards, 64, 1639–1656.

Shirzadi A., Shahabi H., Chapi K., Bui D.T., Pham B.T., Shahedi K., Ahmad B.B., 2017b. A comparative study between popular statistical and machine learning methods for simulating volume of landslides. CATENA, 157, 213–226.

Shirzadi A., Solaimani K., Roshan M.H., Kavian A., Chapi K., Shahabi H., Keesstra S., Ahmad B.B., Bui D.T., 2019. Uncertainties of prediction accuracy in shallow landslide modeling: Sample size and raster resolution. Catena, 178, 172–188.

Shirzadi A., Soliamani K., Habibnejhad M., Kavian A., Chapi K., Shahabi H., Chen W., Khosravi K., Thai Pham B., Pradhan B., 2018. Novel GIS based machine learning algorithms for shallow landslide susceptibility mapping. Sensors, 18(11), 3777. https://doi.org/10.3390/s18113777.

Stojanova D., Panov P., Kobler A., Dzeroski S., Taskova K., 2006. Learning to predict forest fires with different data mining techniques, Conference on data mining and data warehouses (SiKDD 2006), Ljubljana, Slovenia, 255–258.

Taalab K., Cheng T., Zhang Y., 2018. Mapping landslide susceptibility and types using Random Forest. Big Earth Data, 2, 159–178.

Taheri K., Shahabi H., Chapi K., Shirzadi A., Gutiérrez F., Khosravi K., 2019. Sinkhole susceptibility mapping: A comparison between Bayes‐based machine learning algorithms. Land Degradation & Development, 30, 730–745.

Tavoularis N., Koumantakis I., Rozos D., Koukis G., 2018. The Contribution of Landslide Susceptibility Factors Through the Use of Rock Engineering System (RES) to the Prognosis of Slope Failures: An Application in Panagopoula and Malakasa Landslide Areas in Greece. Geotechnical and Geological Engineering, 36, 1491–1508.

Thai Pham B., Shirzadi A., Shahabi H., Omidvar E., Singh S.K., Sahana M., Talebpour Asl D., Bin Ahmad B., Kim Quoc N., Lee S., 2019. Landslide susceptibility assessment by novel hybrid machine learning algorithms. Sustainability, 11(16), 4386. https://doi.org/10.3390/su11164386.

Tien Bui D., Khosravi K., Shahabi H., Daggupati P., Adamowski J.F., Melesse A.M., Thai Pham B., Pourghasemi H.R., Mahmoudi M., Bahrami S., 2019a. Flood spatial modeling in northern Iran using remote sensing and gis: A comparison between evidential belief functions and its ensemble with a multivariate logistic regression model. Remote Sensing, 11(13), 1589. https://doi.org/10.3390/rs11131589.

Tien Bui D., Shahabi H., Omidvar E., Shirzadi A., Geertsema M., Clague J.J., Khosravi K., Pradhan B., Pham B.T., Chapi K., 2019b. Shallow landslide prediction using a novel hybrid functional machine learning algorithm. Remote Sensing, 11(8), 931. https://doi.org/10.3390/rs11080931.

Tien Bui D., Shahabi H., Shirzadi A., Chapi K., Alizadeh M., Chen W., Mohammadi A., Ahmad B., Panahi M., Hong H., 2018a. Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia. Remote Sensing, 10(10), 1527. https://doi.org/10.3390/rs10101527.

Tien Bui D., Shahabi H., Shirzadi A., Chapi K., Pradhan B., Chen W., Khosravi K., Panahi M., Bin Ahmad B., Saro L., 2018b. Land subsidence susceptibility mapping in south korea using machine learning algorithms. Sensors, 18(8), 2464. https://doi.org/10.3390/s18082464.

Tien Bui D., Shahabi H., Shirzadi A., Chapi K., Pradhan B., Chen W., Khosravi K., Panahi M., Id B., Bin A., Lee C.-W., Lee S., 2018c. Land Subsidence Susceptibility Mapping in South Korea Using Machine Learning Algorithms. Sensors, 18(8), 2464.

Tien Bui D., Shirzadi A., Chapi K., Shahabi H., Pradhan B., Pham B.T., Singh V.P., Chen W., Khosravi K., Bin Ahmad B., 2019c. A Hybrid Computational Intelligence Approach to Groundwater Spring Potential Mapping. Water, 11(10), 2013. https://doi.org/10.3390/w11102013.

Tien Bui D., Shirzadi A., Shahabi H., Chapi K., Omidavr, E., Pham B.T., Talebpour Asl D., Khaledian H., Pradhan B., Panahi M., 2019d. A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors, 19(11), 2444. https://doi.org/10.3390/s19112444.

Tien Bui D., Shirzadi A., Shahabi H., Geertsema M., Omidvar E., Clague J.J., Thai Pham B., Dou J., Talebpour Asl D., Bin Ahmad B., 2019e. New Ensemble Models for Shallow Landslide Susceptibility Modeling in a Semi-Arid Watershed. Forests, 10(9), 743. https://doi.org/10.3390/f10090743.

Timofeev R., 2004. Classification and regression trees (CART) theory and applications. Humboldt University, Berlin.

Varnes D.J., Radbruch-Hall D.H., Savage W.Z., 1989. Topographic and structural conditions in areas of gravitational spreading of ridges in the western United States. United States Geological Survey, Professional Paper, (USA), 1496.

Wang J.-H., Deng P.S., Fan Y.-S., Jaw L.-J., Liu Y.-C., 2003. Virus detection using data mining techinques, IEEE 37th Annual 2003 International Carnahan Conference onSecurity Technology, 2003. Proceedings. IEEE, 71–76.

Wang Y., Hong H., Chen W., Li S., Panahi M., Khosravi K., Shirzadi A., Shahabi H., Panahi S., Costache R., 2019. Flood susceptibility mapping in dingnan county (China) using adaptive neuro-fuzzy inference system with biogeography based optimization and imperialistic competitive algorithm. Journal of environmental management, 247, 712–729.

Wu S.-Y., Yen E., 2009. Data mining-based intrusion detectors. Expert Systems with Applications, 36, 5605–5612.

Youssef A.M., Pourghasemi H.R., Pourtaghi Z.S., Al-Katheeri M.M., 2016. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides, 13, 839–856.

Zhao Y., Zhang Y., 2008. Comparison of decision tree methods for finding active objects. Advances in Space Research, 41, 1955–1959.

Downloads

Published

26-06-2020

How to Cite

Ghasemian, B., Asl, D. T., Pham, B. T., Avand, M., Nguyen, H. D., & Janizadeh, S. (2020). Shallow landslide susceptibility mapping: A comparison between classification and regression tree and reduced error pruning tree algorithms. Vietnam Journal of Earth Sciences, 42(3), 208–227. https://doi.org/10.15625/0866-7187/42/3/14952

Most read articles by the same author(s)