Key Structural Elements around the East Vietnam Sea (South China Sea) and implications on reconstructions: towards a clarification

M. Pubellier, B. Sautter
Author affiliations

Authors

  • M. Pubellier CNRS-UMR 8538, Laboratoire de Géologie, Paris Sorbonne University, Ecole Normale Supérieure 24, rue 2Lhomond, F-75231 Paris Cedex 05, France
  • B. Sautter Commission for the Geological Map of the World, 77 rue Claude Bernard, 75005, Paris, France

DOI:

https://doi.org/10.15625/1859-3097/17435

Keywords:

East Vietnam Sea, reconstructions, rifted basins, Cretaceous, Tethys Ocean.

Abstract

The East Vietnam Sea (EVS) or the South China Sea (SCS in this paper) is one of the best-studied basins in the world and one of the largest marginal basins. If the mechanisms of rifting and spreading are well documented and invoke many specific aspects of structure and evolution, it has nevertheless been highly controversial in terms of its relationships with the neighboring basins; some of which have partly or entirely disappeared. This paper recapitulates the critical structural elements, such as the localization of magmatic activity and rifted basins from the Cretaceous to the Present, to evaluate the arguments for the reconstructions. We begin with the location of the Cretaceous magmatic arc along the Vietnam and China margins to discuss the setting and timing of the subduction of an oceanic domain which is unlikely to be the Proto South China Sea (PSCS) itself. This evolution raises the question of the existence and modalities of docking of the Argo and Luconia blocks and requires an intensive stretching of this early docked continental basement before seafloor spreading in the PSCS and the Celebes Sea from the end of Cretaceous to the Oligocene. The SCS was the latest basin to open within the continental margin and is believed to have developed within the downgoing plate. The crustal blocks separated by rifting and sea-floor spreading were later shortened from the Early Miocene to the Present, leaving the appearance of a complex tectonic system. This exercise indicates simple solutions which had not been stated previously, such as the possible connection between the Tethys Ocean and an oceanic domain between the PSCS and the coastal regions of China and Vietnam. The PSCS developed later toward the South, probably in a back-arc position, and the EVS opened amid this system intrinsically linked to the subduction of the PSCS.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Taylor, B., and Hayes, D. E., 1980. The tectonic evolution of the South China Basin. Washington DC American Geophysical Union Geophysical Monograph Series, 23, 89–104.

Weiwei, D. I. N. G., Schnabel, M., Franke, D., Aiguo, R. U. A. N., and Zhenli, W. U., 2012. Crustal Structure across the northwestern margin of South China Sea: Evidence for magma‐poor rifting from a wide‐angle seismic profile. Acta Geologica Sinica‐English Edition, 86(4), 854–866.

Franke, D., Savva, D., Pubellier, M., Steuer, S., Mouly, B., Auxietre, J. L., Meresse, F., and Chamot-Rooke, N., 2014. The final rifting evolution in the South China Sea. Marine and Petroleum Geology, 58, 704–720. https://doi.org/ 10.1016/j.marpetgeo.2013.11.020

Holloway, N. H., 1982. North Palawan block, Philippines—Its relation to Asian mainland and role in evolution of South China Sea. AAPG Bulletin, 66(9), 1355–1383.

Morley, C. K., 2016. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. Journal of Asian Earth Sciences, 120, 62–86.

Cullen, A., Reemst, P., Henstra, G., Gozzard, S., and Ray, A., 2010. Rifting of the South China Sea: new perspectives. Petroleum Geoscience, 16(3), 273–282.

Chan, L. S., Shen, W., and Pubellier, M., 2010. Polyphase rifting of greater Pearl River Delta region (South China): Evidence for possible rapid changes in regional stress configuration. Journal of Structural Geology, 32(6), 746–754.

Nanni, U., Pubellier, M., Chan, L. S., and Sewell, R. J., 2017. Rifting and reactivation of a Cretaceous structural belt at the northern margin of the South China Sea. Journal of Asian Earth Sciences, 136, 110–123.

Teng, L. S., and Lin, A. T., 2004. Cenozoic tectonics of the China continental margin: insights from Taiwan. Geological Society, London, Special Publications, 226(1), 313–332.

Rangin, C., Spakman, W., Pubellier, M., and Bijwaard, H., 1999. Tomographic and geological constraints on subduction along the eastern Sundaland continental margin (South-East Asia). Bulletin de la Société géologique de France, 170(6), 775–788.

Wu, J., and Suppe, J., 2018. Proto-South China Sea plate tectonics using subducted slab constraints from tomography. Journal of Earth Science, 29(6), 1304–1318.

Pubellier, M., Aurelio, M., and Sautter, B., 2018. The life of a marginal basin depicted in a structural map of the South China Sea. Episodes Journal of International Geoscience, 41(3), 139–142.

Lunt, P., 2019. A new view of integrating stratigraphic and tectonic analysis in South China Sea and north Borneo basins. Journal of Asian Earth Sciences, 177, 220–239.

Hamilton, W., 1979. Tectonics of the Indonesia region. US Geological Survey, Professional Paper, 1078, 1–345.

Sautter, B., and Pubellier, M., 2022. Structural control of Mesozoic orogens on SE Asia Basin opening. Journal of Asian Earth Sciences, 230, 105207.

Karig, D. E., 1983. Temporal relationships between back arc basin formation and arc volcanism with special reference to the Philippine Sea. Washington DC American Geophysical Union Geophysical Monograph Series, 27, 318–325.

Silver, E., Rangin, C., Von Breymann, M., Berner, U., Bertrand, P., Beltzer, C., Brass, G. W., Huang, Z., Jarrard, R., Lewis, S., Lindsey, B., Merril, D., Muller, C., Nederbragt, A., Nichols, G., Pubellier, M., Sajona, F. G., Scherrer, R. P., Sheu, D. D., Shibuya, H., Shyu, J. P., Smith, R., Smith, T., Solidum, R. U., Spadea, P., and Tannan, D. D., 1989. Origins of marginal basins. Nature, 338, 380.

Hall, R., 2002. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian earth sciences, 20(4), 353–431.

Chang, S. P., Pubellier, M., Delescluse, M., Qiu, Y., Nirrengarten, M., Mohn, G., Charmot-Rooke, N., and Liang, Y., 2022. Crustal architecture and evolution of the southwestern South China Sea: Implications to continental breakup. Marine and Petroleum Geology, 136, 105450.

Rangin, C., Jolivet, L., and Pubellier, M. A. N. U. E. L., 1990. A simple model for the tectonic evolution of southeast Asia and Indonesia region for the past 43 my. Bulletin de la Société géologique de France, 6(6), 889–905.

Zhou, X. M., and Li, W. X., 2000. Origin of Late Mesozoic igneous rocks in Southeastern China: implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics, 326(3-4), 269–287.

Audley-Charles, M. G., 1983. Reconstruction of eastern Gondwanaland. Nature, 306(5938), 48–50.

Lee, T. Y., and Lawver, L. A., 1994. Cenozoic plate reconstruction of the South China Sea region. Tectonophysics, 235(1–2), 149–180.

Hutchison, C., 1989. Geological Evolution of South-east Asia. Oxford Monographs on Geology and Geophysics, 13, 1–368.

Rangin, C., Pubellier, M., and Jolivet, L., 1989. Collision between the margins of eurasia and australia-a process for closure of marginal basins in Southeast-Asia. Comptes Rendus De L Academie Des Sciences Serie II, 309(11), 1223–1229.

Hall, R., 1996. Reconstructing Cenozoic SE Asia. Geological Society, London, Special Publications, 106(1), 153–184.

Pubellier, M., Ego, F., Chamot-Rooke, N., and Rangin, C., 2003. The building of pericratonic mountain ranges: structural and kinematic constraints applied to GIS-based reconstructions of SE Asia. Bulletin de la Société géologique de France, 174(6), 561–584.

Pubellier, M., and Morley, C. K., 2014. The basins of Sundaland (SE Asia): Evolution and boundary conditions. Marine and Petroleum Geology, 58, 555–578.

Tapponnier, P., Peltzer, G. L. D. A. Y., Le Dain, A. Y., Armijo, R., and Cobbold, P., 1982. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616.

Tapponnier, P., Peltzer, G., and Armijo, R., 1986. On the mechanics of the collision between India and Asia. Geological Society, London, Special Publications, 19(1), 113–157.

Leloup, P. H., Arnaud, N., Lacassin, R., Kienast, J. R., Harrison, T. M., Trong, T. P., Replumaz, A., and Tapponnier, P., 2001. New constraints on the structure, thermochronology, and timing of the Ailao Shan‐Red River shear zone, SE Asia. Journal of Geophysical Research: Solid Earth, 106(B4), 6683–6732.

Replumaz, A., and Tapponnier, P., 2003. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. Journal of Geophysical Research: Solid Earth, 108(B6), 2285.

Morley, C. K., 2002. A tectonic model for the Tertiary evolution of strike–slip faults and rift basins in SE Asia. Tectonophysics, 347(4), 189–215.

Morley, C. K., 2012. Late Cretaceous–early Palaeogene tectonic development of SE Asia. Earth-Science Reviews, 115(1–2), 37–75.

Pubellier, M., and Morley, C. K., 2014. The basins of Sundaland (SE Asia): Evolution and boundary conditions. Marine and Petroleum Geology, 58, 555–578.

Faure, M., Lepvrier, C., Van Nguyen, V., Van Vu, T., Lin, W., and Chen, Z., 2014. The South China block-Indochina collision: Where, when, and how?. Journal of Asian Earth Sciences, 79, 260–274.

Guo, F., Fan, W. M., Wang, Y. J., and Lin, G., 2001. Late Mesozoic mafic intrusive complexes in North China Block: constraints on the nature of subcontinental lithospheric mantle. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9–10), 759–771.

Li, J., Zhang, Y., Dong, S., and Johnston, S. T., 2014. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Science Reviews, 134, 98–136.

Charvet, J., Lapierre, H., and Yu, Y., 1994. Geodynamic significance of the Mesozoic volcanism of southeastern China. Journal of Southeast Asian Earth Sciences, 9(4), 387–396.

Sun, K., and Chen, B., 2017. Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. American Mineralogist, 102(5), 1114–1128.

Vladimirov, A. G., Phan, L. A., Travin, A. V., Mikheev, E. I., Murzintsev, N. G., and Annikova, I. Y., 2020. The geology and thermochronology of cretaceous magmatism of Southeastern Vietnam. Russian Journal of Pacific Geology, 14(4), 305–325.

Nguyen, H. H., Pham, N. S., Andrew, C., Bui, V. H., Bui, H. B., Trinh, T. T., and Nguyen, L. A., 2021. Cretaceous Granitic Magmatism in South-Central Vietnam: Constraints from Zircon U–Pb Geochronology. Inżynieria Mineralna, 1(2).

Waight, T., Fyhn, M. B., Thomsen, T. B., Van Tri, T., Nielsen, L. H., Abatzis, I., and Frei, D., 2021. Permian to Cretaceous granites and felsic volcanics from SW Vietnam and S Cambodia: Implications for tectonic development of Indochina. Journal of Asian Earth Sciences, 219, 104902.

Metcalfe, I., 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66, 1–33.

Li, Z. X., and Li, X. H., 2007. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology, 35(2), 179–182.

Wakita, K., 2000. Cretaceous accretionary–collision complexes in central Indonesia. Journal of Asian Earth Sciences, 18(6), 739–749.

Granath, J. W., Christ, J. M., Emmet, P. A., and Dinkelman, M. G., 2011. Pre-Cenozoic sedimentary section and structure as reflected in the JavaSPANTM crustal-scale PSDM seismic survey, and its implications regarding the basement terranes in the East Java Sea. Geological Society, London, Special Publications, 355(1), 53–74.

Tan, D. N. K., 1979. Lupar Valley, West Sarawak, Malaysia. Geological Survey of Malaysia Report, 13, 39–49.

Williams, P. R., Johnston, C. R., Almond, R. A., and Simamora, W. H., 1988. Late Cretaceous to early Tertiary structural elements of West Kalimantan. Tectonophysics, 148(3–4), 279–297.

Fyhn, M. B., Boldreel, L. O., and Nielsen, L. H., 2009. Geological development of the Central and South Vietnamese margin: Implications for the establishment of the South China Sea, Indochinese escape tectonics and Cenozoic volcanism. Tectonophysics, 478(3–4), 184–214.

Yuwono, Y. S., Priyomarsono, S., Maury, T. R., Rampnoux, J. P., Soeria-Atmadja, R., Bellon, H., and Chotin, P., 1988. Petrology of the Cretaceous magmatic rocks from Meratus Range, southeast Kalimantan. Journal of Southeast Asian Earth Sciences, 2(1), 15–22.

Pubellier, M., Girardeau, J., and Tjashuri, I., 1999. Accretion history of Borneo inferred from the polyphase structural features in the Meratus Mountains. Gondwana Dispersion and Asian Accretion—Final Results of IGCP, 321, 141–160.

Tang, D. L., Seward, D., Wilson, C. J., Sewell, R. J., Carter, A., and Paul, B. T., 2014. Thermotectonic history of SE China since the Late Mesozoic: insights from detailed thermochronological studies of Hong Kong. Journal of the Geological Society, 171(4), 591–604.

Yan, P., Wang, L., and Wang, Y., 2014. Late Mesozoic compressional folds in Dongsha Waters, the northern margin of the South China Sea. Tectonophysics, 615, 213–223.

Fyhn, M. B., Pedersen, S. A., Boldreel, L. O., Nielsen, L. H., Green, P. F., Dien, P. T., Huyen, L. T., and Frei, D., 2010. Palaeocene–early Eocene inversion of the Phuquoc–Kampot Som Basin: SE Asian deformation associated with the suturing of Luconia. Journal of the Geological Society, 167(2), 281–295.

Wajzer, M. R., Barber, A. J., and Hidayat, S., 1991. Accretion, collision and strike-slip faulting: the Woyla Group as a key to the tectonic evolution of North Sumatra. Journal of Southeast Asian Earth Sciences, 6(3–4), 447–461.

Briais, A., Patriat, P., and Tapponnier, P., 1993. Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: Implications for the Tertiary tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 98(B4), 6299–6328.

Li, F., Sun, Z., Yang, H., Lin, J., Stock, J. M., Zhao, Z., Xu, H., and Sun, L., 2020. Continental interior and edge breakup at convergent margins induced by subduction direction reversal: A numerical modeling study applied to the South China Sea margin. Tectonics, 39(11), e2020TC006409.

Lin, Y. A., Colli, L., Wu, J., and Schuberth, B. S., 2020. Where are the proto‐South China Sea slabs? SE Asian plate tectonics and mantle flow history from global mantle convection modeling. Journal of Geophysical Research: Solid Earth, 125(12), e2020JB019758.

Parkinson, C. D., Miyazaki, K., Wakita, K., Barber, A. J., and Carswell, D. A., 1998. An overview and tectonic synthesis of the pre‐Tertiary very‐high‐pressure metamorphic and associated rocks of Java, Sulawesi and Kalimantan, Indonesia. Island Arc, 7(1–2), 184–200.

Pubellier, M., Monnier, C., Maury, R., and Tamayo, R., 2004. Plate kinematics, origin and tectonic emplacement of supra-subduction ophiolites in SE Asia. Tectonophysics, 392(1–4), 9–36.

Pubellier, M., Rangin, C., Cadet, J. P., Tjashuri, I., Butterlin, J., and Muller, C., 1992. Nias Island, a polyphased tectonic belt along the inner edge of the Sunda Trench (Mentawai Archipelago, Indonesia). Comptes Rendus De L Academie Des Sciences Serie II, 315(8), 1019–1026.

Advokaat, E. L., Bongers, M. L., Rudyawan, A., BouDagher-Fadel, M. K., Langereis, C. G., and van Hinsbergen, D. J., 2018. Early Cretaceous origin of the Woyla arc (Sumatra, Indonesia) on the Australian plate. Earth and Planetary Science Letters, 498, 348–361.

Dycoco, J. M. A., Payot, B. D., Valera, G. T. V., Labis, F. A. C., Pasco, J. A., Perez, A. D., and Tani, K., 2021. Juxtaposition of Cenozoic and Mesozoic ophiolites in Palawan island, Philippines: New insights on the evolution of the Proto-South China Sea. Tectonophysics, 819, 229085.

Sibuet, J. C., Yeh, Y. C., and Lee, C. S., 2016. Geodynamics of the south China sea. Tectonophysics, 692, 98–119.

Stampfli, G. M., and Borel, G. D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary science letters, 196(1–2), 17–33.

Silver, E. A., Gill, J. B., Schwartz, D., Prasetyo, H., and Duncan, R. A., 1985. Evidence for a submerged and displaced continental borderland, north Banda Sea, Indonesia. Geology, 13(10), 687–691.

Downloads

Published

19-08-2022

How to Cite

Pubellier, M. ., & Sautter, B. . (2022). Key Structural Elements around the East Vietnam Sea (South China Sea) and implications on reconstructions: towards a clarification. Vietnam Journal of Marine Science and Technology, 22(3), 217–229. https://doi.org/10.15625/1859-3097/17435

Issue

Section

Articles