The impacts of some plant protection chemical OCPs on two crustacean species \(\textit{Daphnia magna}\) and \(\textit{Moina macrocopa}\)

Tran Thi Thu Huong, Nguyen Xuan Tong, Le Hung Anh, Le Van Hau
Author affiliations

Authors

  • Tran Thi Thu Huong Faculty of Environment, Hanoi University of Mining and Geology, Hanoi, Vietnam
  • Nguyen Xuan Tong Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh city, Ho Chi Minh city, Vietnam
  • Le Hung Anh Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh city, Ho Chi Minh city, Vietnam
  • Le Van Hau Department of Fisheries Biotechnology, Biotechnology Center of Ho Chi Minh City, Ho Chi Minh city, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/17038

Keywords:

D. magna, M. macrocopa, LC50, DDT, chlordane, toxicity.

Abstract

DDT (Dichloro-diphenyl-trichloroethane) and chlordane are the organochlorine pesticides (OCPs) dangerous to human health and easily accumulate in biological tissues, used to control insects in crops, livestock and house protection. This study aimed to evaluate the toxicity of DDT, cis (alpha-chlordane), and trans (gamma-chlordane) on the growth of two crustaceans species Daphnia magna (D. magna) and Moina macrocopa (M. macrocopa) after 24 h and 48 h. Each test concentration selected 9 individuals of each species and repeated 4 experimental times, the study results showed that the 50% lethal concentration (LC50) of D. magna and M. macrocopa when exposed to DDT for 24 h were 20.8 μg.L-1 and 13.5 μg.L-1, respectively; after 48 h the value decreased to only 4.8 μg.L-1 and 1.7 μg.L-1. Similarly, LC50 values of cis (alpha-chlordane) on 2 species after 24 h exposure were 12.4 μg.L-1 and 11.8 μg.L-1, respectively; after 48 h were 4.6 μg.L-1 and 4.9 μg.L-1. The calculation results of LC50 when exposed to trans (gamma-chlordane) of D. magna and M. macrocopa after 24 h are 17.6 μg.L-1 and 12.4 μg.L-1, respectively; after 48 h, it decreased to 3.8 μg.L-1 and 3.7 μg.L-1 (p < 0.05). The results of the acute toxicity assessment also indicated that M. macrocopa was more sensitive to toxicity than D. magna with the same test conditions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Tan, L., He, M., Men, B., and Lin, C., 2009. Distribution and sources of organochlorine pesticides in water and sediments from Daliao River estuary of Liaodongbay, Bohai Sea (China). Estuarine, Coastal and Shelf Science, 84(1), 119–127.

USEPA, 2018. ECOTOX Knowledgebase. https://cfpub.epa.gov/ecotox/, accessed June 18, 2018.

Czech, B., Jośko, I., and Oleszczuk, P., 2014. Ecotoxicological evaluation of selected pharmaceuticals to Vibrio fischeri and Daphnia magna before and after photooxidation process. Ecotoxicology and environmental safety, 104, 247–253.

Arndt, D. A., Moua, M., Chen, J., and Klaper, R. D., 2013. Core structure and surface functionalization of carbon nanomaterials alter impacts to daphnid mortality, reproduction, and growth: acute assays do not predict chronic exposure impacts. Environmental Science & Technology, 47(16), 9444–9452.

Niculescu, S. P., Lewis, M. A., and Tigner, J., 2008. Probabilistic neural networks modeling of the 48-h LC50 acute toxicity endpoint to Daphnia magna. SAR and QSAR in Environmental Research, 19(7–8), 735–750.

Liu, X. B., Xi, Y. L., Wang, J. X., and Hu, K., 2008. Acute toxicity of DDT and its effects on life table demography of Moina macrocopa. Ying Yong Sheng tai xue bao= The Journal of Applied Ecology, 19(6), 1343–1348.

Huong, T. T. T., Tong, N. X., Binh, N. T., Anh, L. H., and Hong, D. T. B., 2019. The impact of o, p-DDT pesticide toxicity on the development of fish embryo Oryzias curvinotus. Tap chi Sinh hoc, 41(2se1&2se2), 337–344.

Tong, N. X., and Huong, T. T. T., 2019. The impact of endosulfan pesticide toxicity on the growthof Daphnia magna. Vietnam Journal of Science and Technology, 61(1), 21–25.

Weber, C. I., 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Environmental Monitoring Systems Laboratory, Cincinnati, Ohio (USA). United States. Environmental Protection Agency.

Secretaría de Economía, 2010. Norma Mexicana NMX-AA-087-SCFI-2010 Análisis de Agua-Evaluación de Toxicidad Aguda Con Daphnia Magna, Straus (Crustácea-Cladócera)-MÉTODO DE PRUEBA (Cancela a La NMX-AA-087-SCFI-1995). Secretaría de Economía: Cuauhtémoc, Mexico, pp. 39.

Cooney, J. D., 1995. Freshwater tests. In Fundamentals of aquatic toxicology: effects, environmental fate, and risk assessment, ed. GM Hand. pp. 71–102.

Finney, D. J., 1971. Probit analysis, Cambridge University Press. Cambridge, UK. pp. 50–80.

IARC Working Group on the Evaluation of Carcinogenic Risk to Humans, 2018. DDT, Lindane, and 2,4-D; International Agency for Research on Cancer: Lyon, France; ISBN 978-92-832-0179-3

Kuo, J. N., Soon, A. Y., Garrett, C., Wan, M. T., and Pasternak, J. P., 2012. Agricultural pesticide residues of farm runoff in the Okanagan Valley, British Columbia, Canada. Journal of Environmental Science and Health, Part B, 47(4), 250–261.

Mejía‐Saavedra, J., Sánchez‐Armass, S., Santos‐Medrano, G. E., Gonzáaaalez‐Amaro, R., Razo‐Soto, I., Rico‐Martínez, R., and Díaz‐Barriga, F., 2005. Effect of coexposure to DDT and manganese on freshwater invertebrates: pore water from contaminated rivers and laboratory studies. Environmental Toxicology and Chemistry: An International Journal, 24(8), 2037–2044.

Ivorra, L., Cardoso, P. G., Chan, S. K., Tagulao, K., and Cruzeiro, C., 2019. Environmental characterization of 4, 4′-dichlorobenzophenone in surface waters from Macao and Hong Kong coastal areas (Pearl River Delta) and its toxicity on two biological models: Artemia salina and Daphnia magna. Ecotoxicology and environmental safety, 171, 1–11.

Lotufo, G. R., Landrum, P. F., Gedeon, M. L., Tigue, E. A., and Herche, L. R., 2000. Comparative toxicity and toxicokinetics of DDT and its major metabolites in freshwater amphipods. Environmental Toxicology and Chemistry: An International Journal, 19(2), 368–379.

Ton, C., Lin, Y., and Willett, C., 2006. Zebrafish as a model for developmental neurotoxicity testing. Birth Defects Research Part A: Clinical and Molecular Teratology, 76(7), 553–567.

Wu, L., Ru, H., Ni, Z., Zhang, X., Xie, H., Yao, F., Zhang, H., Li, Y., and Zhong, L., 2019. Comparative thyroid disruption by o, p’-DDT and p, p’-DDE in zebrafish embryos/larvae. Aquatic Toxicology, 216, 105280.

Manar, R., Bessi, H., and Vasseur, P., 2009. Reproductive effects and bioaccumulation of chlordane in Daphnia magna. Environmental Toxicology and Chemistry: An International Journal, 28(10), 2150–2159.

Hamir, S. R. and Leo, M. L. N., 2012. Pesticides. CRC Press. 662 p.

Chlorinated Pesticide Standard, Safety Data Sheet. According to Regulation (EC) No. 453/2010.2015.

Lahens, L., Strady, E., Kieu-Le, T. C., Dris, R., Boukerma, K., Rinnert, E., Gasperi, J., and Tassin, B., 2018. Macroplastic and microplastic contamination assessment of a tropical river (Saigon river, Vietnam) transversed by a developing megacity. Environmental Pollution, 236, 661–671.

Arienzo, M., Albanese, S., Lima, A., Cannatelli, C., Aliberti, F., Cicotti, F., Qi, S., and De Vivo, B., 2015. Assessment of the concentrations of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils from the Sarno River basin, Italy, and ecotoxicological survey by Daphnia magna. Environmental monitoring and assessment, 187(2), 1–14.

Narahashi, T., 2010. Neurophysiological effects of insecticides. In Hayes’ Handbook of Pesticide Toxicology (pp. 799–817). Academic Press.

Downloads

Published

31-03-2022

How to Cite

Tran Thi, T. H., Nguyen Xuan, T., Le Hung, A., & Le Van, H. (2022). The impacts of some plant protection chemical OCPs on two crustacean species \(\textit{Daphnia magna}\) and \(\textit{Moina macrocopa}\). Vietnam Journal of Marine Science and Technology, 22(1), 95–102. https://doi.org/10.15625/1859-3097/17038

Issue

Section

Articles