Hybridization of an s-wave impurity with graphene lattice

Hoa T. M. Nghiem, Tien-Lam Pham, Ngoc-Linh Nguyen, Hung T. Dang
Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/20492

Keywords:

Kondo effect, Graphene

Abstract

Hybridization function is a quantity characterizing electron hoppings between an impurity and a host material in which the impurity resides, a full understandinging of it is crucial for studying correlation effects in various impurity problems. This work studies the hybridization function for the Anderson impurity model describing a single-orbital impurity on a honeycomb lattice simulating graphene and presents a calculation approach to obtain this function at low energy. Within this approach, the general form of the hybridization function in graphene is presented and analytical expressions of low-energy hybridization spectrum are obtained. The results quantitatively match numerical solutions for different impurity positions on the lattice. The effect of the low-energy hybridization spectrum and the capability to predict the correlated effects of the impurity problem are discussed thoroughly, suggesting that different types of pseudogap Kondo effect may occur at different impurity positions.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

K. S. Novoselov et al., Electric field effect in atomically thin carbon films, Science 306 (2004) 666. DOI: https://doi.org/10.1126/science.1102896

Y. Zhang, Y.-W. Tan, H. L. Stormer and P. Kim, Experimental observation of the quantum hall effect and berry’s phase in graphene, Nature 438 (2005) 201. DOI: https://doi.org/10.1038/nature04235

K. S. Novoselov et al., Two-dimensional gas of massless dirac fermions in graphene, nature 438 (2005) 197. DOI: https://doi.org/10.1038/nature04233

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, The electronic properties of graphene, Rev. Mod. Phys. 81 (2009) 109. DOI: https://doi.org/10.1103/RevModPhys.81.109

J. Ren et al., Kondo effect of cobalt adatoms on a graphene monolayer controlled by substrate-induced ripples, Nano Letters 14 (2014) 4011 [https://doi.org/10.1021/nl501425n]. DOI: https://doi.org/10.1021/nl501425n

V. W. Brar et al., Gate-controlled ionization and screening of cobalt adatoms on a graphene surface, Nature Physics 7 (2011) 43. DOI: https://doi.org/10.1038/nphys1807

L. Fritz and M. Vojta, The physics of kondo impurities in graphene, Reports on Progress in Physics 76 (2013) 032501. DOI: https://doi.org/10.1088/0034-4885/76/3/032501

A. C. Hewson, The Kondo problem to heavy fermions, vol. 2. Cambridge university press, 1997.

D. Withoff and E. Fradkin, Phase transitions in gapless fermi systems with magnetic impurities, Phys. Rev. Lett. 64 (1990) 1835. DOI: https://doi.org/10.1103/PhysRevLett.64.1835

R. Bulla, T. Pruschke and A. C. Hewson, Anderson impurity in pseudo-gap fermi systems, Journal of Physics: Condensed Matter 9 (1997) 10463. DOI: https://doi.org/10.1088/0953-8984/9/47/014

C. Gonzalez-Buxton and K. Ingersent, Renormalization-group study of anderson and kondo impurities in gapless fermi systems, Phys. Rev. B 57 (1998) 14254. DOI: https://doi.org/10.1103/PhysRevB.57.14254

J. H. Pixley, S. Kirchner, K. Ingersent and Q. Si, Kondo destruction and valence fluctuations in an anderson model, Phys. Rev. Lett. 109 (2012) 086403. DOI: https://doi.org/10.1103/PhysRevLett.109.086403

P. Gegenwart, Q. Si and F. Steglich, Quantum criticality in heavy-fermion metals, nature physics 4 (2008) 186. DOI: https://doi.org/10.1038/nphys892

P. W. Anderson, Localized magnetic states in metals, Phys. Rev. 124 (1961) 41. DOI: https://doi.org/10.1103/PhysRev.124.41

H. T. Dang and H. T. M. Nghiem, Phase diagram of a pseudogap anderson model with application to graphene, arXiv:2107.09854 [cond-mat.str-el] (2021) [2107.09854].

A. Georges, L. d. Medici and J. Mravlje, Strong correlations from hund’s coupling, Annual Review of Condensed Matter Physics 4 (2013) 137. DOI: https://doi.org/10.1146/annurev-conmatphys-020911-125045

A. Georges, G. Kotliar, W. Krauth and M. J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions, Rev. Mod. Phys. 68 (1996) 13. DOI: https://doi.org/10.1103/RevModPhys.68.13

J. W. Negele and H. Orland, Quantum many-particle systems. CRC Press, 2018. DOI: https://doi.org/10.1201/9780429497926

E. Gull et al., Continuous-time monte carlo methods for quantum impurity models, Rev. Mod. Phys. 83 (2011) 349. DOI: https://doi.org/10.1103/RevModPhys.83.349

A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski, Methods of quantum field theory in statistical physics. Courier Corporation, 2012.

C. R. Cassanello and E. Fradkin, Kondo effect in flux phases, Phys. Rev. B 53 (1996) 15079. DOI: https://doi.org/10.1103/PhysRevB.53.15079

L. Fritz and M. Vojta, Phase transitions in the pseudogap anderson and kondo models: Critical dimensions, renormalization group, and local-moment criticality, Phys. Rev. B 70 (2004) 214427. DOI: https://doi.org/10.1103/PhysRevB.70.214427

M. Vojta and L. Fritz, Upper critical dimension in a quantum impurity model: Critical theory of the asymmetric pseudogap kondo problem, Phys. Rev. B 70 (2004) 094502. DOI: https://doi.org/10.1103/PhysRevB.70.094502

N. W. Ashcroft and N. D. Mermin, Solid State Physics. Holt-Saunders, 1976.

Downloads

Published

11-06-2024

How to Cite

[1]
H. Nghiem, L. Pham, L. Nguyen, and H. T. Đặng, “Hybridization of an s-wave impurity with graphene lattice”, Comm. Phys., vol. 34, no. 2, p. 163, Jun. 2024.

Issue

Section

Papers

Funding data

Received 02-04-2024
Accepted 03-06-2024
Published 11-06-2024