STUDY OF THE INFLUENCE OF SMALL DEFECTS NEAR A SINGULAR POINT IN ANTIPLANE ELASTICITY BY AN ASYMPTOTIC METHOD

Dang Thi Bach Tuyet, Laurence Halpern, Jean-Jacques Marigo

Abstract


We consider a domain made of a linear elastic material which contains an angular point. A small defect, like a cavity or a crack, is located in the neighborhood of the tip of the wedge. In order to study its inuence both on the local and global responses of the body, we use a matched asymptotic expansion method. After the general construction of the matched asymptotic expansions for an arbitrary defect, we develop the method in the particular case where the defect is a small crack. The numerical results obtained from the method are nally compared with those given by the classical nite element method. All the analysis is made in an antiplane setting in order to make easier the calculations.

Keywords


Brittle fracture; cohesive model; asymptotic methods; singularities

Refbacks

  • There are currently no refbacks.


Editorial Office:

Vietnam Journal of Mechanics

3rd Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 024 3791 7103

Email: vjmech@vjs.ac.vn