Beam element for large displacement analysis of elasto-plastic frames

Nguyen Dinh Kien, Do Quoc Quang

Abstract


The present paper develops a non-linear beam element for analysis of elastoplastic frames under large displacements. The finite element formulations are derived by using the co-rotational approach and expression of the virtual work. The Gauss quadrature is employed for numerically computing the element tangent stiffness matrix and internal force vector. A bilinear stress-strain relationship with isotropic hardening is adopted to update the stress. The arc-length technique based on the Newton-Raphson iterative method is employed to compute the equilibrium paths. A number of numerical examples is employed to assess the performance of the developed element. The effects of plastic action on the large displacement behavior of the structures as well as the expansion of plastic zones in the loading process are discussed.


Full Text:

PDF


DOI: https://doi.org/10.15625/0866-7136/26/1/5688 Display counter: Abstract : 26 views. PDF : 45 views.

Refbacks

  • There are currently no refbacks.


Copyright (c) 2004 Vietnam Academy of Science and Technology

 

                      

Editorial Office of Vietnam Journal of Mechanics

3rd Floor, A16 Building, 18B Hoang Quoc Viet Street, Cau Giay District, Hanoi, Vietnam

Tel: (+84) 24 3791 7103

Email: vjmech@vjs.ac.vn