Estimation of friction capacity of driven piles in clay using artificial Neural Network

Thuy-Anh Nguyen, Hai-Bang Ly, Abolfazl Jaafari, Thai Binh Pham
Author affiliations

Authors

  • Thuy-Anh Nguyen University of Transport Technology, Hanoi 100000, Vietnam
  • Hai-Bang Ly University of Transport Technology, Hanoi 100000, Vietnam
  • Abolfazl Jaafari Research Institute of Forests and Rangelands, Agricultural Research, Education, and Extension Organization (AREEO), P.O. Box 64414-356, Tehran, Iran
  • Thai Binh Pham University of Transport Technology, Hanoi 100000, Vietnam

DOI:

https://doi.org/10.15625/0866-7187/42/3/15182

Keywords:

Artificial Intelligence (AI), Artificial Neural Network (ANN), Levenberg Marquart algorithm, friction capacity of driven piles

Abstract

The load capacity of driven piles is a crucial mechanical property, and correctly determine the corresponding value is important in geotechnical engineering. Concerning piles driven in clay, the load capacity is mainly associated with the side resistance of the pile. The soil load capacity of conventional piles is determined by different methods and then reassessed by the static load test. Nonetheless, this method is time-consuming and costly. Therefore, the development of an alternative approach using machine learning techniques to solve this problem has been investigated recently. In this work, the backpropagation network model (ANN) with a 4-layer structure [4-8-6-1] was introduced to predict the frictional resistance of pile driven in clay. The dataset for the development of the ANN model consisted of 65 instances, extracted from the available literature. The performance of the proposed ANN algorithm was assessed by two statistical measurements, such as the Pearson correlation coefficient (denoted as R), and Root Mean Square Error (RMSE). In addition to the original contribution, the present work conducted a step further toward a better knowledge of the role of inputs used in the prediction phase. Using partial independence plots (PDP), the results of this study showed that the effective vertical stress and the undrained shear strength were the prediction variables that had a significant influence on the friction capacity of driven piles.

Downloads

Download data is not yet available.

References

Armaghani D.J., Mirzaei F., Shariati Mahdi, Trung N.T., Shariati Morteza, Trnavac D., 2020. Hybrid ANN-based techniques in predicting cohesion of sandy-soil combined with fiber. Geomechanics and Engineering, 20, 191–205.

Chai T., Draxler R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7, 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014. https://doi.org/10.5194/gmd-7-1247-2014.">

Chan W.T., Chow Y.K., Liu L.F., 1995. Neural network: An alternative to pile driving formulas. Computers and Geotechnics, 17, 135–156. https://doi.org/10.1016/0266-352X(95)93866-H. https://doi.org/10.1016/0266-352X(95)93866-H.">

Chen W., Sarir P., Bui X.-N., Nguyen H., Tahir M.M., Jahed Armaghani D., 2020. Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. Engineering with Computers, 36, 1101–1115. https://doi.org/10.1007/s00366-019-00752-x. https://doi.org/10.1007/s00366-019-00752-x.">

Chow K., Chan W.T., Liu L., Lee S., 1995. Prediction of pile capacity from stress‐wave measurements: A neural network approach. International Journal for Numerical and Analytical Methods in Geomechanics, 19, 107–126. https://doi.org/10.1002/nag.1610190204. https://doi.org/10.1002/nag.1610190204.">

Dahou Z., Mehdi Sbartaï Z., Castel A., Ghomari F., 2009. Artificial neural network model for steel–concrete bond prediction. Engineering Structures, 31, 1724–1733. https://doi.org/10.1016/j.engstruct.2009.02.010. https://doi.org/10.1016/j.engstruct.2009.02.010.">

Dao D., Trinh S., Ly H.-B., Pham B., 2019. Prediction of Compressive Strength of Geopolymer Concrete Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches. Applied Sciences, 9. https://doi.org/10.3390/app9061113. https://doi.org/10.3390/app9061113.">

Dao D.V., Adeli H., Ly H.-B., Le L.M., Le V.M., Le T.-T., Pham B.T., 2020. A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation. Sustainability, 12, 830. https://doi.org/10.3390/su12030830. https://doi.org/10.3390/su12030830.">

Du Y., Chen Z., Zhang C., Cao X., 2017. Research on axial bearing capacity of rectangular concrete-filled steel tubular columns based on artificial neural networks. Frontiers of Computer Science, 11, 863–873. https://doi.org/10.1007/s11704-016-5113-6. https://doi.org/10.1007/s11704-016-5113-6.">

Goh A.T.C., 1995a. Back-propagation neural networks for modeling complex systems. Artificial Intelligence in Engineering, 9, 143–151. https://doi.org/10.1016/0954-1810(94)00011-S. https://doi.org/10.1016/0954-1810(94)00011-S.">

Goh A.T.C., 1995b. Empirical design in geotechnics using neural networks. Géotechnique, 45, 709–714. https://doi.org/10.1680/geot.1995.45.4.709. https://doi.org/10.1680/geot.1995.45.4.709.">

Han H., Armaghani D.J., Tarinejad R., Zhou J., Tahir M., 2020. Random Forest and Bayesian Network Techniques for Probabilistic Prediction of Flyrock Induced by Blasting in Quarry Sites. Natural Resources Research, 1–13.

Harandizadeh H., Jahed Armaghani D., Khari M., 2019. A new development of ANFIS-GMDH optimized by PSO to predict pile bearing capacity based on experimental datasets. Engineering with Computers. https://doi.org/10.1007/s00366-019-00849-3. https://doi.org/10.1007/s00366-019-00849-3.">

Jahed Armaghani D., Shoib R.S.N.S.B.R., Faizi K., Rashid A.S.A., 2017. Developing a hybrid PSO–ANN model for estimating the ultimate bearing capacity of rock-socketed piles. Neural Computing and Applications, 28, 391–405. https://doi.org/10.1007/s00521-015-2072-z. https://doi.org/10.1007/s00521-015-2072-z.">

Jegadesh S., Jayalekshmi S., 2015. Application of Artificial Neural Network for Calculation of Axial Capacity of Circular Concrete Filled Steel Tubular Columns. International Journal of Earth Sciences and Engineering, 8, 35–42.

Khorsheed M.S., Al-Thubaity A.O., 2013. Comparative evaluation of text classification techniques using a large diverse Arabic dataset. Language Resources and Evaluation, 47, 513–538. https://doi.org/10.1007/s10579-013-9221-8. https://doi.org/10.1007/s10579-013-9221-8.">

Le L.M., Ly H.B., Pham B.T., Le V.M., Pham T.A., Nguyen D.H., Tran X.T., Le T.T., 2019. Hybrid artificial intelligence approaches for predicting buckling damage of steel columns under axial compression. Materials, 12. https://doi.org/10.3390/ma12101670. https://doi.org/10.3390/ma12101670.">

Le T.-T., Pham B.T., Ly H.-B., Shirzadi A., Le L.M., 2020. Development of 48-hour Precipitation Forecasting Model using Nonlinear Autoregressive Neural Network, in: Ha-Minh C., Dao D.V., Benboudjema F., Derrible S., Huynh D.V.K., Tang A.M. (Eds.), CIGOS 2019. Innovation for Sustainable Infrastructure, Lecture Notes in Civil Engineering. Springer Singapore, 1191–1196.

Leema N., Nehemiah H.K., Kannan A., 2016. Neural network classifier optimization using Differential Evolution with Global Information and Back Propagation algorithm for clinical datasets. Applied Soft Computing, 49, 834–844. https://doi.org/10.1016/j.asoc.2016.08.001. https://doi.org/10.1016/j.asoc.2016.08.001.">

Ly H.B., Le L.M., Duong H.T., Nguyen T.C., Pham T.A., Le T.T., Le V.M., Nguyen Ngoc L., Pham B.T., 2019. Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections. Applied Sciences (Switzerland), 9. https://doi.org/10.3390/app9112258. https://doi.org/10.3390/app9112258.">

Ly H.-B., et al., 2019. Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete. Applied Sciences, 9(18), 3841. https://doi.org/10.3390/app9183841. https://doi.org/10.3390/app9183841.">

Menard S., 2000. Coefficients of Determination for Multiple Logistic Regression Analysis. The American Statistician, 54, 17–24. https://doi.org/10.1080/00031305.2000.10474502. https://doi.org/10.1080/00031305.2000.10474502.">

Momeni E., Nazir R., Jahed Armaghani D., Maizir H., 2015. Application of Artificial Neural Network for Predicting Shaft and Tip Resistances of Concrete Piles. Earth Sciences Research Journal, 19, 85–93. https://doi.org/10.15446/esrj.v19n1.38712. https://doi.org/10.15446/esrj.v19n1.38712.">

Murlidhar B.R., Kumar D., Jahed Armaghani D., Mohamad E.T., Roy B., Pham B.T., 2020. A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock. Nat Resour Res. https://doi.org/10.1007/s11053-020-09676-6. https://doi.org/10.1007/s11053-020-09676-6.">

Nguyen H.-L., Le T.-H., Pham C.-T., Le T.-T., Ho L.S., Le V.M., Pham B.T., Ly H.-B., 2019. Development of Hybrid Artificial Intelligence Approaches and a Support Vector Machine Algorithm for Predicting the Marshall Parameters of Stone Matrix Asphalt. Applied Sciences, 9, 3172. https://doi.org/10.3390/app9153172. https://doi.org/10.3390/app9153172.">

Pham B.T., Le L.M., Le T.-T., Bui K.-T.T., Le V.M., Ly H.-B., Prakash I., 2020. Development of advanced artificial intelligence models for daily rainfall prediction. Atmospheric Research 237, 104845. https://doi.org/10.1016/j.atmosres.2020.104845. https://doi.org/10.1016/j.atmosres.2020.104845.">

Pham B.T., Nguyen M.D., Dao D. Van, Prakash I., Ly H.-B., Le T.-T., Ho L.S., Nguyen K.T., Ngo T.Q., Hoang V., Son L.H., Ngo H.T.T., Tran H.T., Do N.M., Van Le H., Ho H.L., Tien Bui D., 2019. Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of The Total Environment, 679, 172–184. https://doi.org/10.1016/j.scitotenv.2019.05.061. https://doi.org/10.1016/j.scitotenv.2019.05.061.">

Phong T.V., Phan T.T., Prakash I., Singh S.K., Shirzadi A., Chapi K., Ly H.-B., Ho L.S., Quoc N.K., Pham B.T., 2019. Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district, Vietnam. Geocarto International, 1–24. https://doi.org/10.1080/10106049.2019.1665715. https://doi.org/10.1080/10106049.2019.1665715.">

Prayogo D., Susanto Y.T.T., 2018. Optimizing the Prediction Accuracy of Friction Capacity of Driven Piles in Cohesive Soil Using a Novel Self-Tuning Least Squares Support Vector Machine. Advances in Civil Engineering, 6490169. https://doi.org/10.1155/2018/6490169. https://doi.org/10.1155/2018/6490169.">

Randolph M.F., 2003. Science and empiricism in pile foundation design. Géotechnique, 53, 847–875. https://doi.org/10.1680/geot.2003.53.10.847. https://doi.org/10.1680/geot.2003.53.10.847.">

Randolph M.F., Carter J.P., Wroth C.P., 1979. Driven piles in clay the effects of installation and subsequent consolidation. Géotechnique, 29, 361–393. https://doi.org/10.1680/geot.1979.29.4.361. https://doi.org/10.1680/geot.1979.29.4.361.">

Ranganathan A., 2004. The Levenberg-Marquardt Algorithm 3 LM as a blend of Gradient descent and Gauss-Newton itera. Internet httpexcelsior cs ucsb educoursescs290ipdfL MA pdf, 142, 1–5.

Sadeghi F., Monjezi M., Armaghani D.J., 2020. Evaluation and optimization of prediction of toe that arises from mine blasting operation using various soft computing techniques. Natural Resources Research, 29, 887–903.

Samui P., 2008. Prediction of friction capacity of driven piles in clay using the support vector machine. Department of Civil Engineering, Indian Institute of Science, Bangalore - 560 012, India, 288–295.

Singh S., 2012. Backpropagation Learning Algorithm Based on Levenberg Marquardt Algorithm, Computer Science & Information Technology. https://doi.org/10.5121/csit.2012.2438. https://doi.org/10.5121/csit.2012.2438.">

Sun D., Lonbani M., Askarian B., Armaghani D.J., Tarinejad R., Pham B.T., Huynh V.V., 2020. Investigating the Applications of Machine Learning Techniques to Predict the Rock Brittleness Index. Applied Sciences, 10, 1691.

Tan Y.-C., Chow C.-M., Gue S.-S., 2011. Jack-in Pile in Malaysia: A Malaysian Consultant’s Perspective. Proceedings of the 2nd VLA Seminar: New Developments in Jacked Piling, Hong Kong, 18th March, 1–25.

Van Dao D., Trinh S.H., Ly H.B., Pham B.T., 2019. Prediction of compressive strength of geopolymer concrete using entirely steel slag aggregates: Novel hybrid artificial intelligence approaches. Applied Sciences (Switzerland), 9, 1–16. https://doi.org/10.3390/app9061113. https://doi.org/10.3390/app9061113.">

Vanluchene R., Sun R., 2008. Neural Networks in Structural Engineering. Computer‐Aided Civil and Infrastructure Engineering, 5, 207–215. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x. https://doi.org/10.1111/j.1467-8667.1990.tb00377.x.">

Wrana B., 2016. Pile Load Capacity - Calculation Methods. Studia Geotechnica et Mechanica 37, 83–93. https://doi.org/10.1515/sgem-2015-0048. https://doi.org/10.1515/sgem-2015-0048.">

Yong W., Zhou J., Jahed Armaghani D., Tahir M., Tarinejad R., Pham B., Huynh V., 2020. A new hybrid simulated annealing-based genetic programming technique to predict the ultimate bearing capacity of piles. Engineering with Computers. https://doi.org/10.1007/s00366-019-00932-9. https://doi.org/10.1007/s00366-019-00932-9.">

Zhou R., Wu D., Fang L., Xu A., Lou X., 2018. A Levenberg–Marquardt Backpropagation Neural Network for Predicting Forest Growing Stock Based on the Least-Squares Equation Fitting Parameters. Forests, 9, 757. https://doi.org/10.3390/f9120757. https://doi.org/10.3390/f9120757.">

Downloads

Published

26-06-2020

How to Cite

Nguyen, T.-A., Ly, H.-B., Jaafari, A., & Pham, T. B. (2020). Estimation of friction capacity of driven piles in clay using artificial Neural Network. Vietnam Journal of Earth Sciences, 42(3), 265–275. https://doi.org/10.15625/0866-7187/42/3/15182

Most read articles by the same author(s)