Using Artificial Neural Network (ANN) for prediction of soil coefficient of consolidation

Thai Binh Pham, Sushant K. Singh, Hai-Bang Ly
Author affiliations

Authors

  • Thai Binh Pham University of Transport Technology, Hanoi 100000, Vietnam
  • Sushant K. Singh Artificial Intelligence & Analytics, Healthcare and Life Science, Virtusa Corporation, New York, NY, U.S.A.
  • Hai-Bang Ly University of Transport Technology, Hanoi 100000, Vietnam

DOI:

https://doi.org/10.15625/0866-7187/42/4/15008

Keywords:

Compression coefficient, Artificial Neural Networks, Vietnam, machine learning

Abstract

Soil Coefficient of Consolidation (Cv) is a crucial mechanical parameter and used to characterize whether the soil undergoes consolidation or compaction when subjected to pressure. In order to define such a parameter, the experimental approaches are costly, time-consuming, and required appropriate equipment to perform the tests. In this study, the development of an alternative manner to estimate the Cv, based on Artificial Neural Network (ANN), was conducted. A database containing 188 tests was used to develop the ANN model. Two structures of ANN were considered, and the accuracy of each model was assessed using common statistical measurements such as the coefficient of determination (R2), root mean square error (RMSE), and mean absolute error (MAE). In performing 600 simulations in each case, the ANN structure containing 14 neurons was statistically superior to the other one. Finally, a typical ANN result was presented to prove that it can be an excellent predictor of the problem, with a satisfying accuracy performance that yielded of RMSE = 0.0614, MAE = 0.0415, and R2 = 0.99727. This study might help in quick and accurate prediction of the Cv used in civil engineering problems.

Downloads

Download data is not yet available.

References

Armaghani D.J., Mohamad E.T., Hajihassani M., Yagiz S., Motaghedi H., 2016. Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Engineering with Computers, 32, 189–206.

Asteris P.G., Mokos V.G., 2019. Concrete compressive strength using artificial neural networks. Neural Comput & Applic. https://doi.org/10.1007/s00521-019-04663-2.

Asteris Panagiotis G., Apostolopoulou M., Skentou A.D., Moropoulou A., 2019. Application of artificial neural networks for the prediction of the compressive strength of cement-based mortars. Computers and Concrete, 24, 329–345.

Asteris Panagiotis G., Armaghani D.J., Hatzigeorgiou G.D., Karayannis C.G., Pilakoutas K., 2019. Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks. Computers and Concrete, 24, 469–488. https://doi.org/10.12989/cac.2019.24.5.469.

Chen H., Asteris P.G., Jahed Armaghani D., Gordan B., Pham B.T., 2019. Assessing Dynamic Conditions of the Retaining Wall: Developing Two Hybrid Intelligent Models. Applied Sciences, 9, 1042. https://doi.org/10.3390/app9061042.

Dao D.V., Adeli H., Ly H.-B., Le L.M., Le V.M., Le T.-T., Pham B.T., 2020a. A Sensitivity and Robustness Analysis of GPR and ANN for High-Performance Concrete Compressive Strength Prediction Using a Monte Carlo Simulation. Sustainability, 12, 830. https://doi.org/10.3390/su12030830.

Dao D.V., Jaafari A., Bayat M., Mafi-Gholami D., Qi C., Moayedi H., Phong T.V., Ly H.-B., Le T.-T., Trinh P.T., Luu C., Quoc N.K., Thanh B.N., Pham B.T., 2020b. A spatially explicit deep learning neural network model for the prediction of landslide susceptibility. CATENA, 188, 104451. https://doi.org/10.1016/j.catena.2019.104451.

Dao D.V., Ly H.-B., Trinh S.H., Le T.-T., Pham B.T., 2019. Artificial Intelligence Approaches for Prediction of Compressive Strength of Geopolymer Concrete. Materials, 12, 983. https://doi.org/10.3390/ma12060983.

Dao D.V., Ly H.-B., Vu H.-L.T., Le T.-T., Pham B.T., 2020c. Investigation and Optimization of the C-ANN Structure in Predicting the Compressive Strength of Foamed Concrete. Materials, 13, 1072. https://doi.org/10.3390/ma13051072.

Das B.M., Sobhan K., 2013. Principles of geotechnical engineering. Cengage learning.

Dou J., Yunus A.P., Merghadi A., Shirzadi A., Nguyen H., Hussain Y., Avtar R., Chen Y., Pham B.T., Yamagishi H., 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of The Total Environment, 720, 137320.

Gallant S.I., Gallant S.I., 1993. Neural network learning and expert systems. MIT press.

Hecht-Nielsen R., 1987. Kolmogorov’s mapping neural network existence theorem, in: Proceedings of the International Conference on Neural Networks. IEEE Press New York, 11–14.

Khandelwal M., Marto A., Fatemi S.A., Ghoroqi M., Armaghani D.J., Singh T.N., Tabrizi O., 2018. Implementing an ANN model optimized by genetic algorithm for estimating cohesion of limestone samples. Engineering with Computers, 34, 307–317.

L’heureux A., Grolinger K., Elyamany H.F., Capretz M.A., 2017. Machine learning with big data: Challenges and approaches. IEEE Access, 5, 7776–7797.

Le T.-T., Pham B.T., Le V.M., Ly H.-B., Le L.M., 2020a. A Robustness Analysis of Different Nonlinear Autoregressive Networks Using Monte Carlo Simulations for Predicting High Fluctuation Rainfall, in: Micro-Electronics and Telecommunication Engineering. Springer, 205–212.

Le T.-T., Pham B.T., Ly H.-B., Shirzadi A., Le L.M., 2020b. Development of 48-hour Precipitation Forecasting Model using Nonlinear Autoregressive Neural Network, in: Ha-Minh C., Dao D.V., Benboudjema F., Derrible S., Huynh D.V.K., Tang A.M. (Eds.), CIGOS 2019, Innovation for Sustainable Infrastructure, Lecture Notes in Civil Engineering. Springer, Singapore, 1191–1196. https://doi.org/10.1007/978-981-15-0802-8_191.

Le V.M., Pham B.T., Le T.-T., Ly H.-B., Le L.M., 2020. Daily Rainfall Prediction Using Nonlinear Autoregressive Neural Network. Presented at the Micro-Electronics and Telecommunication Engineering: Proceedings of 3rd ICMETE 2019, Springer, 213–221.

Ly H.-B., Desceliers C., Le L.M., Le T.-T., Pham B.T., Nguyen-Ngoc L., Doan V.T., Le M., 2019a. Quantification of Uncertainties on the Critical Buckling Load of Columns under Axial Compression with Uncertain Random Materials. Materials, 12, 1828. https://doi.org/10.3390/ma12111828.

Ly H.-B., Le L.M., Duong H.T., Nguyen T.C., Pham T.A., Le T.-T., Le V.M., Nguyen-Ngoc L., Pham B.T., 2019b. Hybrid Artificial Intelligence Approaches for Predicting Critical Buckling Load of Structural Members under Compression Considering the Influence of Initial Geometric Imperfections. Applied Sciences. 9, 2258. https://doi.org/10.3390/app9112258.

Ly H.-B., Le L.M., Phi L.V., Phan V.-H., Tran V.Q., Pham B.T., Le T.-T., Derrible S., 2019c. Development of an AI Model to Measure Traffic Air Pollution from Multisensor and Weather Data. Sensors, 19, 4941. https://doi.org/10.3390/s19224941.

Ly H.-B., Le T.-T., Le L.M., Tran V.Q., Le V.M., Vu H.-L.T., Nguyen Q.H., Pham B.T., 2019d. Development of Hybrid Machine Learning Models for Predicting the Critical Buckling Load of I-Shaped Cellular Beams. Applied Sciences, 9, 5458. https://doi.org/10.3390/app9245458.

Ly H.-B., Le T.-T., Vu H.-L.T., Tran V.Q., Le L.M., Pham B.T., 2020. Computational Hybrid Machine Learning Based Prediction of Shear Capacity for Steel Fiber Reinforced Concrete Beams. Sustainability, 12, 2709. https://doi.org/10.3390/su12072709.

Ly H.-B., Pham B.T., 2020. Prediction of Shear Strength of Soil Using Direct Shear Test and Support Vector Machine Model. The Open Construction and Building Technology Journal 14.

Ly H.-B., Pham B.T., Dao D.V., Le V.M., Le L.M., Le T.-T., 2019e. Improvement of ANFIS Model for Prediction of Compressive Strength of Manufactured Sand Concrete. Applied Sciences, 9, 3841. https://doi.org/10.3390/app9183841.

Mohamad E.T., Armaghani D.J., Hasanipanah M., Murlidhar B.R., Alel M.N.A., 2016. Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environmental Earth Sciences, 75, 174.

Mohamad E.T., Armaghani D.J., Momeni E., Yazdavar A.H., Ebrahimi M., 2018. Rock strength estimation: a PSO-based BP approach. Neural Computing and Applications, 30, 1635–1646.

Mohamad E.T., Hajihassani M., Armaghani D.J., Marto A., 2012. Simulation of blasting-induced air overpressure by means of artificial neural networks. Int. Rev. Model. Simul, 5, 2501–2506.

Momeni E., Nazir R., Armaghani D.J., Maizir H., 2015. Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sciences Research Journal, 19, 85–93.

Nagendra S., 1998. Practical Aspects of Using Neural Networks: Necessary Preliminary Specifications. Technical Paper, GE Research and Development Center.

Nguyen H.-L., Pham B.T., Son L.H., Thang N.T., Ly H.-B., Le T.-T., Ho L.S., Le T.-H., Tien Bui D., 2019. Adaptive Network Based Fuzzy Inference System with Meta-Heuristic Optimizations for International Roughness Index Prediction. Applied Sciences, 9, 4715. https://doi.org/10.3390/app9214715.

Nguyen H.Q., Ly H.-B., Tran V.Q., Nguyen T.-A., Le T.-T., Pham B.T., 2020. Optimization of Artificial Intelligence System by Evolutionary Algorithm for Prediction of Axial Capacity of Rectangular Concrete Filled Steel Tubes under Compression. Materials, 13, 1205. https://doi.org/10.3390/ma13051205.

Nguyen M.D., Pham B.T., Tuyen T.T., Hai Yen H.P., Prakash I., Vu T.T., Chapi K., Shirzadi A., Shahabi H., Dou J., Quoc N.K., Bui D.T., 2019. Development of an Artificial Intelligence Approach for Prediction of Consolidation Coefficient of Soft Soil: A Sensitivity Analysis. The Open Construction and Building Technology Journal, 13. https://doi.org/10.2174/1874836801913010178.

Nguyen P.T., Ha D.H., Avand M., Jaafari A., Nguyen H.D., Al-Ansari N., Phong T.V., Sharma R., Kumar R., Le H.V., 2020a. Soft Computing Ensemble Models Based on Logistic Regression for Groundwater Potential Mapping. Applied Sciences, 10, 2469.

Nguyen P.T., Ha D.H., Jaafari A., Nguyen H.D., Van Phong T., Al-Ansari N., Prakash I., Le H.V., Pham B.T., 2020b. Groundwater Potential Mapping Combining Artificial Neural Network and Real AdaBoost Ensemble Technique: The DakNong Province Case-study, Vietnam. International Journal of Environmental Research and Public Health, 17, 2473.

Nguyen P.T., Ha D.H., Nguyen H.D., Van Phong T., Trinh P.T., Al-Ansari N., Le H.V., Pham B.T., Ho L.S., Prakash I., 2020c. Improvement of Credal Decision Trees Using Ensemble Frameworks for Groundwater Potential Modeling. Sustainability, 12, 2622.

Pham B.T., Nguyen M.D., Bui K.-T.T., Prakash I., Chapi K., Bui D.T., 2019a. A novel artificial intelligence approach based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting coefficient of consolidation of soil. CATENA, 173, 302–311. https://doi.org/10.1016/j.catena.2018.10.004.

Pham B.T., Nguyen M.D., Dao D.V., Prakash I., Ly H.-B., Le T.-T., Ho L.S., Nguyen K.T., Ngo T.Q., Hoang V., Son L.H., Ngo H.T.T., Tran H.T., Do N.M., Van Le H., Ho H.L., Tien Bui D., 2019b. Development of artificial intelligence models for the prediction of Compression Coefficient of soil: An application of Monte Carlo sensitivity analysis. Science of The Total Environment, 679, 172–184. https://doi.org/10.1016/j.scitotenv.2019.05.061.

Pham B.T., Nguyen M.D., Ly H.-B., Pham T.A., Hoang V., Van Le H., Le T.-T., Nguyen H.Q., Bui G.L., 2020a. Development of Artificial Neural Networks for Prediction of Compression Coefficient of Soft Soil, in: Ha-Minh C., Dao D.V., Benboudjema F., Derrible S., Huynh D.V.K., Tang, A.M. (Eds.), CIGOS 2019, Innovation for Sustainable Infrastructure, Lecture Notes in Civil Engineering. Springer Singapore, 1167–1172.

Pham B.T., Nguyen-Thoi T., Ly H.-B., Nguyen M.D., Al-Ansari N., Tran V.-Q., Le T.-T., 2020b. Extreme Learning Machine Based Prediction of Soil Shear Strength: A Sensitivity Analysis Using Monte Carlo Simulations and Feature Backward Elimination. Sustainability, 12, 2339. https://doi.org/10.3390/su12062339.

Phong T.V., Phan T.T., Prakash I., Singh S.K., Shirzadi A., Chapi K., Ly H.-B., Ho L.S., Quoc N.K., Pham B.T., 2019. Landslide susceptibility modeling using different artificial intelligence methods: a case study at Muong Lay district, Vietnam. Geocarto International, 1–24. https://doi.org/10.1080/10106049.2019.1665715.

Qi C., Ly H.-B., Chen Q., Le T.-T., Le V.M., Pham B.T., 2020a. Flocculation-dewatering prediction of fine mineral tailings using a hybrid machine learning approach. Chemosphere, 244, 125450. https://doi.org/10.1016/j.chemosphere.2019.125450.

Qi C., Zhou W., Lu X., Luo H., Pham B.T., Yaseen Z.M., 2020b. Particulate matter concentration from open-cut coal mines: A hybrid machine learning estimation. Environmental Pollution, 114517.

Sridharan A., Nagaraj H.B., 2004. Coefficient of Consolidation and its Correlation with Index Properties of Remolded Soils. GTJ, 27, 469–474. https://doi.org/10.1520/GTJ10784.

Tamura S., 1997. Method of determining an optimal number of neurons contained in hidden layers of a neural network.

Thanh T.T.M., Ly H.-B., Pham B.T., 2020. A Possibility of AI Application on Mode-choice Prediction of Transport Users in Hanoi, in: Ha-Minh, C., Dao, D.V., Benboudjema, F., Derrible, S., Huynh, D.V.K., Tang, A.M. (Eds.), CIGOS 2019, Innovation for Sustainable Infrastructure. Springer Singapore, Singapore, 1179–1184. https://doi.org/10.1007/978-981-15-0802-8_189.

Downloads

Published

14-09-2020

How to Cite

Pham, T. B., Singh, S. K., & Ly, H.-B. (2020). Using Artificial Neural Network (ANN) for prediction of soil coefficient of consolidation. Vietnam Journal of Earth Sciences, 42(4), 311–319. https://doi.org/10.15625/0866-7187/42/4/15008

Issue

Section

Articles