The maternal genetics structure of the Cham-Raglay-Coho-Ma disclosed by whole mitochondrial DNA

Huong Thao Dinh, Van Hai Nong, Thuy Duong Nguyen
Author affiliations

Authors

  • Huong Thao Dinh 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
    2 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
  • Van Hai Nong 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
  • Thuy Duong Nguyen 1 Institute of Genome Research, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0001-8691-9138

DOI:

https://doi.org/10.15625/vjbt-21323

Keywords:

Cham, Raglay, Coho, Ma mitogenomes, Austronesian, Austroasiatic

Abstract

Cham, Raglay, Coho, and Ma were native people residing in Central and Southern Vietnam. Their lifestyle and traditional customs revealed the closeness in contact. Here, the mitogenomes of 126 individuals of these four aforementioned groups were analyzed on a molecular level and evaluated the maternal haplogroup architecture. A total of 445 unique variants were screened 6807 times in this dataset, showing a mean variant count of 54.02 ± 3.77 variants per person. Out of 445 unique variants, 88 were present in all individuals, and 137 were shared between at least two populations. The remaining 220 were exclusive to a single population, in which Raglay retained the most (88 variants), and Coho had the least (22 variants). Ma and Coho shared the highest number of unique variants: 163/445 were identified in both. Pair-wise genetic distance was the highest between Raglay and Coho (Fst = 0.13659) and the lowest between Ma and Coho. The maternal haplogroup profile encompassed 30 representatives, stratified into six macro-haplogroups (B, E, F, M, N and R). M, B, and F accounted for 94.45% of the dataset, and the most prevalent branches were B5a1b1 (11.11%), M24b (10.32%), and F1a1a1 (7.94%). The similarities between highlander populations were shown in the macrohaplogroup components, as well as regional features, while the diversity was expressed in unique variants and specific lineages, providing further understanding of the genetic structure of these underrepresented ethnic groups.

Downloads

References

General Statistics Office. (2021). Infographic population, labour and employment in 2021. In: General Statistics Office.

General Statistic Office. (2019). Completed results of the 2019 Vietnam population and housing census. In (https://www.gso.gov.vn/wp-content/uploads/2019/12/Ket-qua-toan-bo-Tong-dieu-tra-dan-so-va-nha-o-2019.pdfpp. 840). Vietnam: General Statistics Office.

Tinh, V. X. (2020). Mon-Khmer group (Tinh, V. X., Ed. 2nd ed., Vol. 3). National political publishing house.

Dang, H. G. (2024). The montagnard village: unique heritage of the Vietnamese central highlands. The Russian Journal of Vietnamese Studies, 7(4), 71-81. https://doi.org/10.54631/VS.2023.74-623865

Vickery, M. (2011). Champa revised. In the Cham of Vietnam: History, society and art (https://www.jstor.org/stable/j.ctv1qv2rd). NUS Press.

Vuong, X. T. (2020). Part II: Sinitic and Austronesian groups (Vuong, X. T., Ed. 2nd ed., Vol. 4). National political publishing house.

Peng, M. S., Quang, H. H., Dang, K. P., Trieu, A. V., Wang, H. W., Yao, Y. G., et al. (2010). Tracing the austronesian footprint in mainland Southeast Asia: A perspective from mitochondrial DNA. Molecular Biology and Evolution, 27(10), 2417-2430. https://doi.org/10.1093/molbev/msq131

Macholdt, E., Arias, L., Duong, N. T., Ton, N. D., Van Phong, N., Schröder, R., et al. (2020). The paternal and maternal genetic history of Vietnamese populations. European Journal of Human Genetics, 28(5), 636-645. https://doi.org/10.1038/s41431-019-0557-4

Duong, N. T., Macholdt, E., Ton, N. D., Arias, L., Schröder, R., Van Phong, N., et al. (2018). Complete human mtDNA genome sequences from Vietnam and the phylogeography of Mainland Southeast Asia. Scientific Reports, 8(1), 11651. https://doi.org/10.1038/s41598-018-29989-0

Liu, D., Duong, N. T., Ton, N. D., Van Phong, N., Pakendorf, B., Van Hai, N., et al. (2020). Extensive ethnolinguistic diversity in Vietnam reflects multiple sources of genetic diversity. Molecular Biology and Evolution, 37(9), 2503-2519. https://doi.org/10.1093/molbev/msaa099

Maricic, T., Whitten, M., Pääbo, S. (2010). Multiplexed DNA sequence capture of mitochondrial genomes using pcr products. PLoS ONE, 5(11), e14004. https://doi.org/10.1371/journal.pone.0014004

Arias, L., Barbieri, C., Barreto, G., Stoneking, M., Pakendorf, B. (2018). High‐resolution mitochondrial DNA analysis sheds light on human diversity, cultural interactions, and population mobility in Northwestern Amazonia. American Journal of Physical Anthropology, 165(2), 238-255. https://doi.org/10.1002/ajpa.23345

Behar, Doron M., van Oven, M., Rosset, S., Metspalu, M., Loogväli, E.-L., Silva, Nuno M., et al. (2012). A “copernican” reassessment of the human mitochondrial DNA tree from its root. The American Journal of Human Genetics, 90(4), 675-684. https://doi.org/10.1016/j.ajhg.2012.03.002

Katoh, K. ,Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010

Thao, D. H., Dinh, T. H., Mitsunaga, S., Duy, D., Phuong, N. T., Anh, N. P., et al. (2024). Investigating demic versus cultural diffusion and sex bias in the spread of Austronesian languages in Vietnam. PLoS One, 19(6), e0304964. https://doi.org/10.1371/journal.pone.0304964

Weissensteiner, H., Pacher, D., Kloss-Brandstätter, A., Forer, L., Specht, G., Bandelt, H.-J., et al. (2016). HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Research, 44(W1), W58-W63. https://doi.org/10.1093/nar/gkw233

Van Oven, M. ,Kayser, M. (2009). Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Human Mutation, 30(2), E386-E394. https://doi.org/10.1002/humu.20921

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O'Hara, R. B., et al. (2012). vegan: Community Ecology Package. In. https://github.com/vegandevs/vegan/issues

Nenadic, O. ,Greenacre, M. (2007). Correspondence analysis in R , with two- and three-dimensional graphics: the ca package. Journal of Statistical Software, 20(3). https://doi.org/10.18637/jss.v020.i03

Excoffier, L. ,Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564-567. https://doi.org/10.1111/j.1755-0998.2010.02847.x

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd 2016 ed., https://link.springer.com/content/pdf/bfm:978-3-319-24277-4/1?pdf=chapter%20toc). Springer International Publishing : Imprint: Springer.

Guo, X., Xu, W., Zhang, W., Pan, C., Thalacker-Mercer, A. E., Zheng, H., et al. (2023). High-frequency and functional mitochondrial DNA mutations at the single-cell level. Proceedings of the National Academy of Sciences of the United States of America, 120(1), e2201518120. https://doi.org/10.1073/pnas.2201518120

Al‐Kafaji, G., Alharbi, M. A., Alkandari, H., Salem, A. H., Bakhiet, M. (2022). Analysis of the entire mitochondrial genome reveals Leber’s hereditary optic neuropathy mitochondrial DNA mutations in an Arab cohort with multiple sclerosis. Scientific Reports, 12(1), 11099. https://doi.org/10.1038/s41598-022-15385-2

Ng, Y. S., Lax, N. Z., Maddison, P., Alston, C. L., Blakely, E. L., Hepplewhite, P. D., et al. (2018). MT-ND5 mutation exhibits highly variable neurological manifestations at low mutant load. Ebiomedicine, 30, 86-93. https://doi.org/10.1016/j.ebiom.2018.02.010

Danhelovska, T., Kolarova, H., Zeman, J., Hansikova, H., Vaneckova, M., Lambert, L., et al. (2020). Multisystem mitochondrial diseases due to mutations in mtDNA-encoded subunits of complex I. BMC Pediatrics, 20(1), 41. https://doi.org/10.1186/s12887-020-1912-x

Lyu, Y., Xu, M., Chen, J., Ji, Y., Guan, M.-X., Zhang, J. (2019). Frequency and spectrum of MT-TT variants associated with Leber's hereditary optic neuropathy in a Chinese cohort of subjects. Mitochondrial DNA. Part B, Resources, 4(2), 2266-2280. https://doi.org/10.1080/23802359.2019.1627921

Jaisamut, K., Pitiwararom, R., Sukawutthiya, P., Sathirapatya, T., Noh, H., Worrapitirungsi, W., et al. (2023). Unraveling the mitochondrial phylogenetic landscape of Thailand reveals complex admixture and demographic dynamics. Scientific Reports, 13(1), 20396. https://doi.org/10.1038/s41598-023-47762-w

Woravatin, W., Stoneking, M., Srikummool, M., Kampuansai, J., Arias, L., Kutanan, W. (2023). South Asian maternal and paternal lineages in southern Thailand and the role of sex-biased admixture. Plos one, 18(9), e0291547. https://doi.org/10.1371/journal.pone.0291547

Bodner, M., Zimmermann, B., Röck, A., Kloss-Brandstätter, A., Horst, D., Horst, B., et al. (2011). Southeast Asian diversity: first insights into the complex mtDNA structure of Laos. BMC Evolutionary Biology, 11(1), 49. https://doi.org/10.1186/1471-2148-11-49

Kutanan, W., Kampuansai, J., Srikummool, M., Kangwanpong, D., Ghirotto, S., Brunelli, A., et al. (2017). Complete mitochondrial genomes of Thai and Lao populations indicate an ancient origin of Austroasiatic groups and demic diffusion in the spread of Tai–Kadai languages. Human Genetics, 136(1), 85-98. https://doi.org/10.1007/s00439-016-1742-y

Peng, M.-S., He, J.-D., Liu, H.-X., Zhang, Y.-P. (2011). Tracing the legacy of the early Hainan Islanders - a perspective from mitochondrial DNA. BMC Evolutionary Biology, 11(1), 46. https://doi.org/10.1186/1471-2148-11-46

Kutanan, W., Shoocongdej, R., Srikummool, M., Hübner, A., Suttipai, T., Srithawong, S., et al. (2020). Cultural variation impacts paternal and maternal genetic lineages of the Hmong-Mien and Sino-Tibetan groups from Thailand. European Journal of Human Genetics, 28(11), 1563-1579. https://doi.org/10.1038/s41431-020-0693-x

Scholes, C., Siddle, K., Ducourneau, A., Crivellaro, F., Järve, M., Rootsi, S., et al. (2011). Genetic diversity and evidence for population admixture in Batak Negritos from Palawan. American Journal of Physical Anthropology, 146(1), 62-72. https://doi.org/10.1002/ajpa.21544

Hill, C., Soares, P., Mormina, M., Macaulay, V., Meehan, W., Blackburn, J., et al. (2006). Phylogeography and Ethnogenesis of Aboriginal Southeast Asians. Molecular Biology and Evolution, 23(12), 2480-2491. https://doi.org/10.1093/molbev/msl124

Gunnarsdóttir, E. D., Nandineni, M. R., Li, M., Myles, S., Gil, D., Pakendorf, B., et al. (2011a). Larger mitochondrial DNA than Y-chromosome differences between matrilocal and patrilocal groups from Sumatra. Nature Communications, 2(1), 228. https://doi.org/10.1038/ncomms1235

Gunnarsdóttir, E. D., Li, M., Bauchet, M., Finstermeier, K., Stoneking, M. (2011b). High-throughput sequencing of complete human mtDNA genomes from the Philippines. Genome Research, 21(1), 1-11. https://doi.org/10.1101/gr.107615.110

Duggan, A. T., Evans, B., Friedlaender, F. R., Friedlaender, J. S., Koki, G., Merriwether, D. A., et al. (2014). Maternal history of Oceania from complete mtDNA genomes: contrasting ancient diversity with recent homogenization due to the Austronesian expansion. American Journal of Human Genetics, 721-733. https://doi.org/10.1016/j.ajhg.2014.03.014

Kloss-Brandstätter, A., Summerer, M., Horst, D., Horst, B., Streiter, G., Raschenberger, J., et al. (2021). An in-depth analysis of the mitochondrial phylogenetic landscape of Cambodia. Scientific Reports, 11(1), 10816. https://doi.org/10.1038/s41598-021-90145-2

Li, Y.-C., Wang, H.-W., Tian, J.-Y., Liu, L.-N., Yang, L.-Q., Zhu, C.-L., et al. (2015). Ancient inland human dispersals from Myanmar into interior East Asia since the Late Pleistocene. Scientific Reports, 5(1), 9473. https://doi.org/10.1038/srep09473

Zhang, X., Qi, X., Yang, Z., Serey, B., Sovannary, T., Bunnath, L., et al. (2013). Analysis of mitochondrial genome diversity identifies new and ancient maternal lineages in Cambodian aborigines. Nature Communications, 4(1), 2599. https://doi.org/10.1038/ncomms3599

Downloads

Published

30-03-2025

How to Cite

Dinh, H. T., Nong, V. H., & Nguyen, T. D. (2025). The maternal genetics structure of the Cham-Raglay-Coho-Ma disclosed by whole mitochondrial DNA. Vietnam Journal of Biotechnology, 23(1), 1–12. https://doi.org/10.15625/vjbt-21323

Issue

Section

Articles

Funding data