Polymorphism of Growth Factor 1 gene in New Zealand rabbit breed in Cu Chi farm, Vietnam

Phu Nam Anh Bui, Van Hop Nguyen, Ba Chung Le, Minh Tri Ngo
Author affiliations

Authors

  • Phu Nam Anh Bui \(^1)\ Animal Genetics Group, Faculty of Biotechnology, Ho Chi Minh city Open University, 35-37 Ho Hao Hon street, Co Giang ward, District 1, Ho Chi Minh city, Vietnam https://orcid.org/0000-0002-9430-0893
  • Van Hop Nguyen 2 Institute of Animal Sciences for Southern Vietnam, Organization, 12 Nguyen Chi Thanh street, Ward 2, District 10, Ho Chi Minh city, Vietnam
  • Ba Chung Le 2 Institute of Animal Sciences for Southern Vietnam, Organization, 12 Nguyen Chi Thanh street, Ward 2, District 10, Ho Chi Minh city, Vietnam https://orcid.org/0009-0001-2085-8544
  • Minh Tri Ngo \(^1)\ Animal Genetics Group, Faculty of Biotechnology, Ho Chi Minh city Open University, 35-37 Ho Hao Hon street, Co Giang ward, District 1, Ho Chi Minh city, Vietnam

DOI:

https://doi.org/10.15625/vjbt-22093

Keywords:

GH1 gene polymorphism, New Zealand White rabbits, rabbit growth traits, PCR-RFLP genotyping, selective breeding

Abstract

Rabbit husbandry in Vietnam is a growing sector of the livestock industry, offering significant potential for sustainable meat production and economic development, particularly in rural areas. Rabbits are well-suited to Vietnam's tropical climate due to their adaptability, high reproductive rates, and relatively low resource requirements compared to larger livestock. The New Zealand White breed and various local crossbreeds are the most commonly raised rabbits, valued for their resilience, efficient feed conversion, and quality meat. The Growth Hormone 1 (GH1) gene encodes the growth hormone (GH), a pivotal endocrine regulator essential for normal development and metabolic function across animal species. GH is synthesized in the anterior pituitary gland and plays a central role in growth, tissue repair, and metabolism. This study investigates the polymorphism of the Growth Hormone 1 (GH1) gene and its association with growth performance in New Zealand white rabbits reared at Cu Chi Farm, Vietnam. Fifty-six rabbits were genotyped for the GH1 c.-78C>T polymorphism using the PCR-RFLP method, and their body weight at 70 days of age was measured. The genotypic frequencies were distributed as CC (28.57%), CT (44.64%), and TT (26.79%), with allele frequencies of 0.515 for C and 0.485 for T. Statistical analysis revealed that heterozygous CT rabbits exhibited significantly higher body weight (1885 ± 17.04 g) compared to CC (1785.45 ± 12.05 g) and TT (1752 ± 19.35 g) genotypes. The equal allele frequency observed may result from the selective advantage of the heterozygous genotype, maintaining a balanced genetic structure within the population. These findings suggest that GH1 polymorphism influences growth traits and highlight its potential as a genetic marker for selective breeding programs aimed at improving growth efficiency in rabbits. Further studies are recommended to explore additional genetic markers and validate these results on a larger scale.

Downloads

References

Abbas, A. M., Jubrael, J. M. S., & Mohammed, A. B. (2022). Growth hormone gene polymorphism in domestic and wild goat breeds in kurdistan region of iraq using pcr-rflp and snp markers. Bulgarian Journal of Veterinary Medicine. 27(2):2022 https://doi.org/10.15547/bjvm.2022-0051

Akers, R. M. (2006). Major advances associated with hormone and growth factor regulation of mammary growth and lactation in dairy cows. Journal of Dairy Science, 89(4), 1222-1234. https://doi.org/10.3168/jds.S0022-0302(06)72191-9

Babicz, M., Pastwa, M., Kozubska-Sobocińska, A., Danielak-Czech, B., Skrzypczak, E., & Kropiwiec-Domańska, K. (2020). Association analysis of GH1 and CRP loci polymorphisms with reproductive traits in native Pulawska gilts and sows. Canadian Journal of Animal Science, 100(4), 650-656. https://doi.org/10.1139/cjas-2019-0087

Barendse, W., Bunch, R. J., Harrison, B. E., & Thomas, M. B. (2006). The growth hormone 1 GH1:c.457C>G mutation is associated with intramuscular and rump fat distribution in a large sample of Australian feedlot cattle. Animal Genetics, 37(3), 211-214. https://doi.org/10.1111/j.1365-2052.2006.01432.x

Cai, J., Zhao, B., Li, J., Bao, Z., Chen, Y., Liu, Y., & Wu, X. (2022). A single nucleotide polymorphism in the WIF1 promoter region regulates the wool length in rabbits. Agriculture, 12(11). https://doi.org/10.3390/agriculture12111858

CountryReport. (2006). The Vietnam National Country report on Animal Genetic Resources, NIAH, Hanoi, Vietnam (16).

Curi, R. A., Chardulo, L. A. L., Giusti, J., Silveira, A. C., Martins, C. L., & de Oliveira, H. N. (2010). Assessment of GH1, CAPN1 and CAST polymorphisms as markers of carcass and meat traits in Bos indicus and Bos taurus–Bos indicus cross beef cattle. Meat Science, 86(4), 915-920. https://doi.org/https://doi.org/10.1016/j.meatsci.2010.07.016

Dario, C., Carnicella, D., Ciotola, F., Peretti, V., & Bufano, G. (2008). Polymorphism of growth hormone GH1-AluI in Jersey cows and its effect on milk yield and composition. Asian-Australas Journal of Animal Science, 21(1), 1-5. https://doi.org/10.5713/ajas.2008.60586

Dettori, M. L., Pazzola, M., Pira, E., Paschino, P., & Vacca, G. M. (2015). The sheep growth hormone gene polymorphism and its effects on milk traits. Journal of Dairy Research, 82(2), 169-176. https://doi.org/10.1017/S0022029915000047

Esteban, C., Audí, L., Carrascosa, A., Fernández-Cancio, M., Pérez-Arroyo, A., Ulied, A., Andaluz, P., Arjona, R., Albisu, M., Clemente, M., Gussinyé, M., & Yeste, D. (2007). Human growth hormone (GH1) gene polymorphism map in a normal-statured adult population. Clinical Endocrinology (Oxf), 66(2), 258-268. https://doi.org/10.1111/j.1365-2265.2006.02718.x

Fontanesi, L., Dall'Olio, S., Spaccapaniccia, E., Scotti, E., Fornasini, D., Frabetti, A., & Russo, V. (2012). A single nucleotide polymorphism in the rabbit growth hormone (GH1) gene is associated with market weight in a commercial rabbit population. Livestock Science, 147(1), 84-88. https://doi.org/https://doi.org/10.1016/j.livsci.2012.04.006

Gao, C.-M., Gong, J.-P., Wu, J.-Z., Cao, H.-X., Ding, J.-H., Zhou, J.-N., Liu, Y.-T., Li, S.-P., Cao, J., Matsuo, K., Takezaki, T., & Tajima, K. (2010). Relationship between growth hormone 1 genetic polymorphism and susceptibility to colorectal cancer. Journal of Human Genetics, 55(3), 163-166. https://doi.org/10.1038/jhg.2010.3

Giordano, M., Lessi, M., Paracchini, R., Petri, A., Ozerkan, E., Cavallo, L., Wasniewska, M., Aimaretti, G., Momigliano-Richiardi, P., & Bona, G. (2001). Molecular analysis of the growth hormone gene (GH1) in isolated growth hormone deficiency. International Journal on Disability and Human Development 2(1), 45-54. https://doi.org/10.1515/IJDHD.2001.2.1.45

Gitanjli, G., Sankhyan, V., Thakur, Y. P., & Dogra, P. K. (2020). Effect of growth hormone gene polymorphism on growth traits in migratory Gaddi goats of Western Himalayas, India. Tropical Animal Health and Production, 52(4), 2091-2099. https://doi.org/10.1007/s11250-020-02227-4

Goode, M. R., Cheong, S. Y., Li, N., Ray, W. C., & Bartlett, C. W. (2014). Collection and extraction of saliva DNA for next generation sequencing. Journal of Visualized Experiments (90). https://doi.org/10.3791/51697

Hua, G. H., Chen, S. L., Yu, J. N., Cai, K. L., Wu, C. J., Li, Q. L., Zhang, C. Y., Liang, A. X., Han, L., Geng, L. Y., Shen, Z., Xu, D. Q., & Yang, L. G. (2009). Polymorphism of the growth hormone gene and its association with growth traits in Boer goat bucks. Meat Science, 81(2), 391-395. https://doi.org/https://doi.org/10.1016/j.meatsci.2008.08.015

Ilham, F., Rachman, S. D. A. B., Dagong, M. I. A., Rahim, L., & Yulianty. (2016). Genetic polymorphisms of growth hormone (GH) gene in Kacang goat population based on polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) identification. Livestock Research for Rural Development, 28(9). http://www.lrrd.org/lrrd28/9/ilha28167.html

Li, Q., Xu, Z., Zhang, M., Zhao, Z., Sun, B., Yang, et al., (2021). Mutations in GH1 gene and isolated growth hormone deficiency (IGHD): A familial case of IGHD type I and systematic review. Growth Hormone & IGF Research, 60-61, 101423. https://doi.org/10.1016/j.ghir.2021.101423

Mahrous, K. F., Abdel-Aziem, S. H., Abdel-Hafez, M. A. M., Abdel-Mordy, M., & Rushdi, H. E. (2018). Polymorphism of growth hormone gene in three goat breeds in Egypt. Bulletin of the National Research Centre, 42(1), 35. https://doi.org/10.1186/s42269-018-0035-0

Mazurowski, A., Frieske, A., Kokoszynski, D., Mroczkowski, S., Bernacki, Z., & Wilkanowska, A. (2015). Examination of growth hormone (GH) gene polymorphism and its association with body weight and selected body dimensions in ducks. Folia Biologica (Krakow), 63(1), 43-50. https://doi.org/10.3409/fb63_1.43

Migdał, Ł., Migdał, A., Pałka, S., Kmiecik, M., Otwinowska-Mindur, A., Semik-Gurgul, E., & Bieniek, J. (2023). Polymorphism within IGFBP genes affects the acidity, colour, and shear force of rabbit meat. Animals (Basel), 13(23). https://doi.org/10.3390/ani13233743

Nahácky, J., Židek, R., Gabor, M., Miluchová, M., Bučko, O., & Kovacik, A. (2018). MC4R and PGAM2 genes polymorphism association with production traits in rabbit (Oryctolagus cuniculus). Journal of Microbiology, Biotechnology and Food Sciences, 7, 493-495. https://doi.org/10.15414/jmbfs.2018.7.5.493-495

Pal, A., Chakravarty, A. K., & Chatterjee, P. N. (2014). Polymorphism of growth hormone gene and its association with seminal and sexual behavioral traits in crossbred cattle. Theriogenology, 81(3), 474-480. https://doi.org/https://doi.org/10.1016/j.theriogenology.2013.11.002

Procter, A. M., Phillips Iii, J. A., & Cooper, D. N. (1998). The molecular genetics of growth hormone deficiency. Human Genetics, 103(3), 255-272. https://doi.org/10.1007/s004390050815

Radhika, K.C, R., & T.V, A. (2016). Polymorphism of exon 2 and 3 of growth hormone gene and presence of a rare genotype in native goat breed of Kerala, India. Small Ruminant Research, 145, 81-84. https://doi.org /10.1016/j.smallrumres.2016.10.024

Rashijane, L. T., Mbazima, V. G., & Tyasi, T. L. (2022). Polymorphism of growth hormone gene and its association with body measurement traits in Boer goat does. South African Journal of Animal Science, 5(1), 44-49. https://doi.org/ 10.4314/sajas.v52i1.6

Safaa, H. M., Ragab, M., Ahmed, M., El-Gammal, B., & Helal, M. (2023). Influence of polymorphisms in candidate genes on carcass and meat quality traits in rabbits. PLoS One, 18(11), e0294051. https://doi.org/10.1371/journal.pone.0294051

Seevagan, M., Jeichitra, V., Rajendran, R., & Tirumurugaan, K. G. (2015). Detection of lethal SNP (A781G) in growth hormone (GH) gene of Indian sheep. Small Ruminant Research, 126, 13-15. https://doi.org/https://doi.org/10.1016/j.smallrumres.2015.03.003

Wang, J., Shi, Y., Elzo, M. A., Su, Y., Jia, X., Chen, S., et al., (2017). Myopalladin gene polymorphism is associated with rabbit meat quality traits. Italian Journal of Animal Science, 16(3), 400-404. https://doi.org/10.1080/1828051X.2017.1296333

Yan, B., Deng, X., Fei, J., Hu, X., Wu, C., & Li, N. (2003). Single nucleotide polymorphism analysis in chicken growth hormone gene and its associations with growth and carcass traits. Chinese Science Bulletin, 48(15), 1561-1564. https://doi.org/10.1007/BF03183961

Zhang, C., Liu, Y., Huang, K., Zeng, W., Xu, D., Wen, Q., & Yang, L. (2011). The association of two single nucleotide polymorphisms (SNPs) in growth hormone (GH) gene with litter size and superovulation response in goat-breeds. Genetics and Molecular Biology, 34(1), 49-55. https://doi.org/10.1590/s1415-47572010005000110

Downloads

Published

30-03-2025

How to Cite

Bui, P. N. A., Nguyen, V. H., Le, B. C., & Ngo, M. T. (2025). Polymorphism of Growth Factor 1 gene in New Zealand rabbit breed in Cu Chi farm, Vietnam. Vietnam Journal of Biotechnology, 23(1), 41–51. https://doi.org/10.15625/vjbt-22093

Issue

Section

Articles