Development of a loop-mediated amplification (Lamp) assay for detection of environmental Pseudomonas aeruginosa
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-21649Keywords:
duplex-PCR, environmental isolates, LAMP, P. aeruginosaAbstract
Pseudomonas aeruginosa (P. aeruginosa) is a common environmental bacterium found in various habitats, including water and soil. Rapid detection of this microorganism is essential for monitoring environmental contamination and assessing its potential impact on ecosystems and public health. This study aimed to develop a high-efficiency loop-mediated isothermal amplification (LAMP) assay targeting a P. aeruginosa-specific gene encoding a hypothetical protein (GenBank ID: 882161). The study involved two main parts: 1) Isolation and identification of P. aeruginosa from environmental samples, and 2) Evaluation of the established LAMP assay on these environmental P. aeruginosa isolates. A total of 52 samples were collected from various geographical regions in Ho Chi Minh City, with 50 samples (96%) containing Pseudomonas species, characterized as rod-shaped, Gram-negative bacteria growing on selective media. Following duplex PCR screening, 14 P. aeruginosa-like environmental strains were isolated, and 5 randomly selected isolates were confirmed as P. aeruginosa through 16S rRNA sequencing. The LAMP assay was optimized at 60°C, 63°C, and 65°C for 30 and 45 minutes, using specific primers, and tested on all five confirmed P. aeruginosa isolates. The results demonstrated that the LAMP assay was highly specific (100%) for detecting environmental P. aeruginosa, with a detection limit of 1 pg/μL. In conclusion, P. aeruginosa is prevalent in the environment, and the developed LAMP assay shows strong potential for identifying environmental P. aeruginosa isolates.
Downloads
References
Berube, B. J., Rangel, S. M., & Hauser, A. R. (2016). Pseudomonas aeruginosa: breaking down barriers. Curr Genet, 62(1), 109-113. https://doi.org/10.1007/s00294-015-0522-x
Crone, S., Vives-Florez, M., Kvich, L., Saunders, A. M., Malone, M., Nicolaisen, M. H., . . . Bjarnsholt, T. (2020). The environmental occurrence of Pseudomonas aeruginosa. APMIS, 128(3), 220-231. https://doi.org/10.1111/apm.13010
Dong, K., Kang, Z., Ji, X., Zhang, X., Cheng, P., & Sun, B. (2021). A Loop-mediated Isothermal Amplification With a Nanoparticle-Based Lateral Flow Biosensor Assay to Detect Pseudomonas aeruginosa in Endophthalmitis. Translational Vision Science & Technology, 10(14). https://doi.org/10.1167/tvst.10.14.26
Enomoto, Y., Yoshikawa, T., Ihira, M., Akimoto, S., Miyake, F., Usui, C., . . . Asano, Y. (2005). Rapid Diagnosis of Herpes Simplex Virus Infection by a Loop-Mediated Isothermal Amplification Method. Journal of Clinical Microbiology, 43(2), 951-955. https://doi.org/10.1128/jcm.43.2.951-955.2005
Garg, N., Ahmad, F. J., & Kar, S. (2022). Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Current Research in Microbial Sciences, 3. https://doi.org/10.1016/j.crmicr.2022.100120
Gellatly, S. L., & Hancock, R. E. (2013). Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis, 67(3), 159-173. https://doi.org/10.1111/2049-632X.12033
Green, S. K., Schroth, M. N., Cho, J. J., Kominos, S. K., & Vitanza-jack, V. B. (1974). Agricultural plants and soil as a reservoir for Pseudomonas aeruginosa. Appl Microbiol, 28(6), 987-991. https://doi.org/10.1128/am.28.6.987-991.1974
Iglewski, B. H. (1996). Pseudomonas. In th & S. Baron (Eds.), Medical Microbiology. https://www.ncbi.nlm.nih.gov/pubmed/21413324
Jami Al-Ahmadi, G., & Zahmatkesh Roodsari, R. (2016). Fast and specific detection of Pseudomonas aeruginosa from other pseudomonas species by PCR. Ann Burns Fire Disasters, 29(4), 264-267. https://www.ncbi.nlm.nih.gov/pubmed/28289359
Kodackattumannil, P., Sasi, S., Krishnan, S., Lekshmi, G., Kottackal, M., & Amiri, K. (2023). Protocol for the High-quality Plasmid Isolation from Different Recalcitrant Bacterial Species: Agrobacterium spp. , Rhizobium sp., and Bacillus thuringiensis. Bio-Protocol, 13(15). https://doi.org/10.21769/BioProtoc.4788
Koide, Y., Maeda, H., Yamabe, K., Naruishi, K., Yamamoto, T., Kokeguchi, S., & Takashiba, S. (2010). Rapid detection of mecA and spa by the loop-mediated isothermal amplification (LAMP) method. Letters in Applied Microbiology, 50(4), 386-392. https://doi.org/10.1111/j.1472-765X.2010.02806.x
Li, C., Shi, Y., Yang, G., Xia, X. S., Mao, X., Fang, Y., . . . Song, Y. (2018). Establishment of loop‑mediated isothermal amplification for rapid detection of Pseudomonas aeruginosa. Experimental and Therapeutic Medicine. https://doi.org/10.3892/etm.2018.6910
Li, J., Zou, M., Dou, Q., Hu, Y., Wang, H., Yan, Q., & Liu, W. E. (2016). Characterization of clinical extensively drug-resistant Pseudomonas aeruginosa in the Hunan province of China. Ann Clin Microbiol Antimicrob, 15(1), 35. https://doi.org/10.1186/s12941-016-0148-y
Li, Y., Fan, P., Zhou, S., & Zhang, L. (2017). Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microbial Pathogenesis, 107, 54-61. https://doi.org/10.1016/j.micpath.2017.03.016
Lim, K. T., Teh, C. S. J., & Thong, K. L. (2013). Loop-Mediated Isothermal Amplification Assay for the Rapid Detection of Staphylococcus aureus. BioMed Research International, 2013, 1-5. https://doi.org/10.1155/2013/895816
Longo, M. C., Berninger, M. S., & Hartley, J. L. (1990). Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 93(1), 125-128. https://doi.org/10.1016/0378-1119(90)90145-h
Maruyama, F., Kenzaka, T., Yamaguchi, N., Tani, K., & Nasu, M. (2003). Detection of Bacteria Carrying the stx2 Gene by In Situ Loop-Mediated Isothermal Amplification. Applied and Environmental Microbiology, 69(8), 5023-5028. https://doi.org/10.1128/aem.69.8.5023-5028.2003
Mullis, K., Faloona, F., Scharf, S., Saiki, R., Horn, G., & Erlich, H. (1986). Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. Cold Spring Harbor Symposia on Quantitative Biology, 51(0), 263-273. https://doi.org/10.1101/sqb.1986.051.01.032
Nadell, C. D., Ricaurte, D., Yan, J., Drescher, K., & Bassler, B. L. (2017). Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. Elife, 6. https://doi.org/10.7554/eLife.21855
Nguyen, T. T. H., Nguyen, V. D., Nguyen, N. M. H., Nguyen, L. Q. A., Vo, N. H. G., Pham, T. T. V., . . . Huynh, T. Q. (2022). Identification of commensal Pseudomonas aeruginosa isolates using duplex PCR targeting the oprL and algD genes. Science and Technology Development Journal, 25(3), 2481-2488. https://doi.org/10.32508/stdj.v25i3.3961
Notomi, T. (2000). Loop-mediated isothermal amplification of DNA. Nucleic Acids Research, 28(12), 63e-63. https://doi.org/10.1093/nar/28.12.e63
Parikh, R., Mathai, A., Parikh, S., Chandra Sekhar, G., & Thomas, R. (2008). Understanding and using sensitivity, specificity and predictive values. Indian Journal of Ophthalmology, 56(1). https://doi.org/10.4103/0301-4738.37595
Rashno Taee, S., Khansarinejad, B., Abtahi, H., Najafimosleh, M., & Ghaznavi-Rad, E. (2014). Detection of algD, oprL and exoA Genes by New Specific Primers as an Efficient, Rapid and Accurate Procedure for Direct Diagnosis of Pseudomonas aeruginosa Strains in Clinical Samples. Jundishapur J Microbiol, 7(10), e13583. https://doi.org/10.5812/jjm.13583
Sathe, N., Beech, P., Croft, L., Suphioglu, C., Kapat, A., & Athan, E. (2023). Pseudomonas aeruginosa: Infections and novel approaches to treatment “Knowing the enemy” the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infectious Medicine, 2(3), 178-194. https://doi.org/10.1016/j.imj.2023.05.003
Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., . . . Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964. https://doi.org/10.1038/35023079
Tümmler, B., Davenport, C. F., Wiehlmann, L., Cramer, N., & Klockgether, J. (2011). Pseudomonas aeruginosa Genomic Structure and Diversity. Frontiers in Microbiology, 2. https://doi.org/10.3389/fmicb.2011.00150
Wang, X. R., Wu, L. F., Wang, Y., Ma, Y. Y., Chen, F. H., & Ou, H. L. (2015). Rapid detection of Staphylococcus aureus by loop-mediated isothermal amplification. Appl Biochem Biotechnol, 175(2), 882-891. https://doi.org/10.1007/s12010-014-1328-x
Xu, Z., Li, L., Chu, J., Peters, B. M., Harris, M. L., Li, B., . . . Shirtliff, M. E. (2012). Development and application of loop-mediated isothermal amplification assays on rapid detection of various types of staphylococci strains. Food Res Int, 47(2), 166-173. https://doi.org/10.1016/j.foodres.2011.04.042
Yang, B. Y., Liu, X. L., Wei, Y. M., Wang, J. Q., He, X. Q., Jin, Y., & Wang, Z. J. (2014). Rapid and sensitive detection of human astrovirus in water samples by loop-mediated isothermal amplification with hydroxynaphthol blue dye. BMC Microbiol, 14, 38. https://doi.org/10.1186/1471-2180-14-38
Yuan, X. Y., Wang, Y. L., Meng, K., Zhang, Y. X., Xu, H. Y., & Ai, W. (2019). LAMP real-time turbidity detection for fowl adenovirus. BMC Vet Res, 15(1), 256. https://doi.org/10.1186/s12917-019-2015-5
Zhao, X., Li, Y., Wang, L., You, L., Xu, Z., Li, L., . . . Yang, L. (2009). Development and application of a loop-mediated isothermal amplification method on rapid detection Escherichia coli O157 strains from food samples. Molecular Biology Reports, 37(5), 2183-2188. https://doi.org/10.1007/s11033-009-9700-6
Zhao, X., Wang, L., Chu, J., Li, Y., Li, Y., Xu, Z., . . . Yang, L. (2010). Development and application of a rapid and simple loop-mediated isothermal amplification method for food-borne Salmonella detection. Food Science and Biotechnology, 19(6), 1655-1659. https://doi.org/10.1007/s10068-010-0234-4
Zoheir, K. M. A., & Allam, A. A. (2010). A rapid method for sexing the bovine embryo. Animal Reproduction Science, 119(1-2), 92-96. https://doi.org/10.1016/j.anireprosci.2009.12.013