Isolation and characterization of endophytic fungi isolated from Ophiorrhiza baviensis as a source of potential anticancer and antioxidant compounds
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-21957Keywords:
Anticancer, antioxidant, camptothecin, endophytic fungi, Ophiorrhiza baviensisAbstract
Endophytic fungi present in internal tissues of medicinal plants are a potent source of natural products with pharmacological and medical activities. Hence, the present study aimed to isolate endophytic fungi from Ophiorrhiza baviensis Drake and assess their anticancer and antioxidant properties. Twelve fungal endophytes were recovered from O. baviensis growing in Cuc Phuong National Park, in which fungi associated with leaves occupied predominantly. Using morphological and 16S rRNA sequence analyses, fungal strains belonged to Ascomycota, with three different genera Colletotrichum (8 strains), Penicillium (2 strains), and Diaporthe (2 strains). The anticancer assays of cancer cell A549 were carried out for the dichloromethane-methanol extracts of these strains. The crude extract of Colletotrichum kahawae XCB2.L7 showed the highest anticancer activities against A549 at the concentration of 20 μg/mL. The TLC analysis revealed that the anticancer drug camptothecin was likely accumulated in mycelia. Further evaluation of anticancer activities revealed the IC50 values of DPPH, hydroxyl radicals, and superoxide radicals were determined to be 431.5 ± 12.4 µg/mL, 534.24 ± 8.4 µg/mL, and 487.0 ± 9.2 µg/mL, respectively. In line with antioxidant activity, C. kahawae XCB2.L7 produced high levels of polyphenol (89.1 ± 5.4 μg GAE/g FW) and flavonoid (114.2 ± 8.6 μg GAE/g FW) contents. These findings shed new light on endophytic fungi from O. baviensis and provided a promising source for exploration of new and commercial compounds.
Downloads
References
Ahmad, M. F., Zahari, R., Mohtar, M., Wan-Muhammad-Azrul, W. A., Hishamuddin, M. S., Samsudin, N. I. P., et al. (2022). Diversity of endophytic fungi isolated from different plant parts of Acacia mangium, and antagonistic activity against Ceratocystis fimbriata, a causal agent of Ceratocystis wilt disease of A. mangium in Malaysia. Frontiers in Microbiology, 13, 887880. https://doi.org/10.3389/fmicb.2022.887880
Aswani, R., Jasim, B., Arun Vishnu, R., Antony, L., Remakanthan, A., Aravindakumar, C. T., et al. (2020). Nanoelicitor based enhancement of camptothecin production in fungi isolated from Ophiorrhiza mungos. Biotechnology Progress, 36(6), e3039-e3045. https://doi.org/10.1002/btpr.3039
da Silva, M. H. R., Cueva-Yesquén, L. G., Júnior, S. B., Garcia, V. L., Sartoratto, A., de Angelis, D. d. F., et al. (2020). Endophytic fungi from Passiflora incarnata: an antioxidant compound source. Archives of Microbiology, 202(10), 2779-2789. https://doi.org/10.1007/s00203-020-02001-y
Doan, T. N., Le, T. D., Ho, N. A., Ho, T. T., Do, T. T., Hoang, H., et al. (2024). Isolation, anticancer potency, and camptothecin—producing ability of endophytic fungi isolated from Ixora chinensis. Science Progress, 107(2), 00368504241253675. https://doi.org/10.1177/00368504241253675
Grabka, R., d'Entremont, T. W., Adams, S. J., Walker, A. K., Tanney, J. B., Abbasi, P. A., et al. (2022). Fungal endophytes and their role in agricultural plant protection against pests and pathogens. Plants (Basel), 11(3), 384-412. https://doi.org/10.3390/plants11030384
Hashem, A. H., Attia, M. S., Kandil, E. K., Fawzi, M. M., Abdelrahman, A. S., Khader, M. S., et al. (2023). Bioactive compounds and biomedical applications of endophytic fungi: a recent review. Microbial Cell Factories, 22(1), 107-129. https://doi.org/10.1186/s12934-023-02118-x
Lü, Z.-W., Liu, H.-Y., Wang, C.-L., Chen, X., Huang, Y.-X., Zhang, M.-M., et al. (2023). Isolation of endophytic fungi from Cotoneaster multiflorus and screening of drought-tolerant fungi and evaluation of their growth-promoting effects. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1267404
Nguyen, N. H., Ta, Q. T. H., Pham, Q. T., Luong, T. N. H., Phung, V. T., Duong, T.-H., et al. (2020). Anticancer activity of novel plant extracts and compounds from Adenosma bracteosum (Bonati) in human lung and liver cancer cells. Molecules, 25(12), 2912-2927. https://doi.org/10.3390/molecules25122912
Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., et al. (2020). ROS in cancer therapy: the bright side of the moon. Experimental & Molecular Medicine, 52(2), 192-203. https://doi.org/10.1038/s12276-020-0384-2
Pham, M. H., Tran, T. H., Le, T. D., Le, T. L., Hoang, H., & Chu, H. H. (2023). The complete chloroplast genome of an Ophiorrhiza baviensis Drake species reveals its molecular structure, comparative, and phylogenetic relationships. Genes (Basel), 14(1), 227-239. https://doi.org/10.3390/genes14010227
Qiu, M., Xie, R.-s., Shi, Y., Zhang, H., & Chen, H.-m. (2010). Isolation and identification of two flavonoid-producing endophytic fungi from Ginkgo biloba L. Annals of Microbiology, 60(1), 143-150. https://doi.org/10.1007/s13213-010-0016-5
Quach, N. T., Ngo, C. C., Nguyen, T. H., Nguyen, P. L., Vu, T. H. N., Phan, T. H. T., et al. (2022). Genome-wide comparison deciphers lifestyle adaptation and glass biodeterioration property of Curvularia eragrostidis C52. Scientific Reports, 12(1), 11411. https://doi.org/10.1038/s41598-022-15334-z
Quach, N. T., Vu, T. H. N., Nguyen, T. T. A., Ha, H., Ho, P. H., Chu-Ky, S., et al. (2022). Structural and genetic insights into a poly-γ-glutamic acid with in vitro antioxidant activity of Bacillus velezensis VCN56. World Journal of Microbiology and Biotechnology, 38(10), 173. https://doi.org/10.1007/s11274-022-03364-8
Rajan, R., Varghese, S. C., Kurup, R., Gopalakrishnan, R., Venkataraman, R., Satheeshkumar, K., et al. (2013). Search for Camptothecin-yielding Ophiorrhiza species from southern Western Ghats in India: A HPTLC-densitometry study. Industrial Crops and Products, 43, 472-476. https://doi.org/https://doi.org/10.1016/j.indcrop.2012.07.054
Sharma, M., Bharti, S., Goswami, A., & Mallubhotla, S. (2023). Diversity, antimicrobial, antioxidant, and anticancer activity of culturable fungal endophyte communities in Cordia dichotoma. Molecules, 28(19), 6926-6940. https://doi.org/10.3390/molecules28196926
Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., et al. (2021). Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249. https://doi.org/10.3322/caac.21660
Tang, Z., Wang, Y., Yang, J., Xiao, Y., Cai, Y., Wan, Y., et al. (2020). Isolation and identification of flavonoid-producing endophytic fungi from medicinal plant Conyza blinii H.Lév that exhibit higher antioxidant and antibacterial activities. PeerJ, 8, e8978-e9000. https://doi.org/10.7717/peerj.8978
Tiwari, P., & Bae, H. (2022). Endophytic fungi: Key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms, 10(2), 360-402. https://doi.org/10.3390/microorganisms10020360
Tung, Q. N., Busche, T., Van Loi, V., Kalinowski, J., & Antelmann, H. (2020). The redox-sensing MarR-type repressor HypS controls hypochlorite and antimicrobial resistance in Mycobacterium smegmatis. Free Radical Biology and Medicine, 147, 252-261. https://doi.org/https://doi.org/10.1016/j.freeradbiomed.2019.12.032
Turkoglu, A., Duru, M. E., Mercan, N., Kivrak, I., & Gezer, K. (2007). Antioxidant and antimicrobial activities of Laetiporus sulphureus (Bull.) Murrill. Food Chemistry, 101(1), 267-273. https://doi.org/https://doi.org/10.1016/j.foodchem.2006.01.025
Vieira, A., Silva, D. N., Várzea, V., Paulo, O. S., & Batista, D. (2019). Genome-wide signatures of selection in Colletotrichum kahawae reveal candidate genes potentially involved in pathogenicity and aggressiveness [Original Research]. Frontiers in Microbiology, 10, 1374-1388. https://doi.org/10.3389/fmicb.2019.01374
Vu, T. H. N., Pham, N. S., Le, P. C., Pham, Q. A., Quach, N. T., Nguyen, V. T., et al. (2022). Distribution, cytotoxicity, and antioxidant activity of fungal endophytes isolated from Tsuga chinensis (Franch.) Pritz. in Ha Giang province, Vietnam. Annals of Microbiology, 72(1), 36-47. https://doi.org/10.1186/s13213-022-01693-5
Vu, T. H. N., Pham, N. S., Quach, N. T., Le, P. C., Pham, Q. A., Ngo, C. C., et al. (2024). Fusarium foetens AQF6 isolated from Amentotaxus ynnanensis H.L.Li as a prolific source of antioxidant compounds. Applied Sciences, 14(5), 2048-2059. https://doi.org/10.3390/app14052048
Vu, T. H. N., Quach, N. T., Pham, Q. A., Le, P. C., Nguyen, V. T., Le, T. T. X., et al. (2023). Fusarium solani PQF9 isolated from Podocarpus pilgeri growing in Vietnam as a new producer of paclitaxel. Indian Journal of Microbiology, 63(4), 596-603. https://doi.org/10.1007/s12088-023-01119-z
Yang, M., Wang, Q., Liu, Y., Hao, X., Wang, C., Liang, Y., et al. (2021). Divergent camptothecin biosynthetic pathway in Ophiorrhiza pumila. BMC Biology, 19(1), 122-137. https://doi.org/10.1186/s12915-021-01051-y
Zhao, T., Xu, L. L., Zhang, Y., Lin, Z. H., Xia, T., Yang, D. F., et al. (2019). Three new α-pyrone derivatives from the plant endophytic fungus Penicillium ochrochloronthe and their antibacterial, antifungal, and cytotoxic activities. Journal of Asian Natural Products Research, 21(9), 851-858. https://doi.org/10.1080/10286020.2018.1495197
Downloads
Published
How to Cite
Issue
Section
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers TĐCNSH.03/20-22