Isolation and characterization of beneficial bacteria from Apis Cerana honeybees from Hanoi, Vietnam

Author affiliations

Authors

  • Dong Van Quyen \(^1\) Institute of Biotechnology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
    \(^2\) Gradutate University of Science and Technology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
    https://orcid.org/0000-0003-1002-7517
  • Pham Thi Lanh \(^1\) Institute of Biotechnology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam https://orcid.org/0000-0002-6666-8260
  • Ha Thi Thu \(^1\) Institute of Biotechnology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/vjbt-21245

Keywords:

16S rRNA gene, Apis cerana, Bacillus, honeybees, Lactobacillus, MALDI-TOF, probiotics

Abstract

Beneficial bacteria are vital for maintaining honeybee health by outcompeting pathogenic microorganisms, boosting immunity, and enhancing resilience to diseases. Identifying the specific bacterial strains associated with honeybees enables the development of targeted probiotics that can improve the health of bees and humans. The present study describes the isolation and identification of bacterial strains from Apis cerana honeybees in Hanoi, Vietnam, utilizing a culture-based method, Matrix-Assisted Laser Desorption-Ionization Time of Flight Mass Spectrometry (MALDI-TOF) analysis, and 16S rRNA sequencing. MALDI-TOF analysis revealed several beneficial bacterial species, including Lactobacillus kunkeei, Lactobacillus plantarum, Pediococcus pentosaceus, Leuconostoc mesenteroides, Leuconostoc citreum, Bacillus subtilis, and Bacillus megaterium. Antimicrobial spectrum analysis showed that 16 out of the 23 identified isolates exhibited inhibitory effects against tested bacteria. Selected isolates with broad antimicrobial spectra, including L. kunkeei, L. plantarum, P. pentosaceus, L. mesenteroides, L. citreum, and B. subtilis, were further validated through 16S rRNA gene sequencing. The results confirmed the identity of these strains, emphasizing the probiotic potential of L. kunkeei, L. plantarum, L. mesenteroides, L. citreum, P. pentosaceus, and B. subtilis for honeybee health. Our findings provide valuable insights into the bacterial diversity and antimicrobial properties associated with honeybees, suggesting their use as probiotics in beekeeping and beyond.

Downloads

Download data is not yet available.

References

Alberoni, D., Gaggìa, F., Baffoni, L. et al. (2016). Beneficial microorganisms for honey bees: problems and progresses. Appl Microbiol Biotechnol 100, 9469–9482. https://doi.org/10.1007/s00253-016-7870-4.

Alberoni, D., Baffoni, L., Gaggìa, F., Ryan, P., Murphy, K., Ross, P., Stanton, C., & Di Gioia, D. (2018). Impact of beneficial bacteria supplementation on the gut microbiota, colony development and productivity of Apis mellifera L. Beneficial Microbes, 9(2), 269–278. https://doi.org/10.3920/BM2017.0061.

Alberoni, D., Gaggìa, F., Baffoni, L., & Di Gioia, D. (2016). Beneficial microorganisms for honey bees: problems and progresses. Applied microbiology and biotechnology, 100(22), 9469-9482. https://doi.org/10.1007/s00253-016-7870-4.

Alippi, A. M., & Reynaldi, F. J. (2006). Inhibition of the growth of Paenibacillus larvae, the causal agent of American foulbrood of honeybees, by selected strains of aerobic spore–forming bacteria isolated from apiarian sources. Journal of invertebrate pathology, 91(3), 141–146. https://doi.org/10.1016/j.jip.2005.12.002.

Anderson, K. E., & Ricigliano, V. A. (2017). Honey bee gut dysbiosis: a novel context of disease ecology. Current opinion in insect science, 22, 125–132. https://doi.org/10.1016/j.cois.2017.05.020.

Bae, J. Y., Kim, J. I., Park, S., Yoo, K., Kim, I. H., Joo, W., Ryu, B. H., Park, M. S., Lee, I., & Park, M. S. (2018). Effects of Lactobacillus plantarum and Leuconostoc mesenteroides Probiotics on Human Seasonal and Avian Influenza Viruses. Journal of microbiology and biotechnology, 28(6), 893–901. https://doi.org/10.4014/jmb.1804.04001.

Baffoni, L., Gaggìa, F., Alberoni, D., Cabbri, R., Nanetti, A., Biavati, B., & Di Gioia, D. (2016). Effect of dietary supplementation of Bifidobacterium and Lactobacillus strains in Apis mellifera L. against Nosema ceranae. Beneficial Microbes, 7(1), 45–51. https://doi.org/10.3920/BM2015.0085.

Berríos, P., Fuentes, J., Salas, D., Carreño, A., Aldea, P., Fernández, F., & Trombert, A. (2018). Inhibitory effect of biofilm-forming Lactobacillus kunkeei strains against virulent Pseudomonas aeruginosa in vitro and in honeycomb moth (Galleria mellonella) infection model. Beneficial Microbes, 9(2), 257-268. https://doi.org/10.3920/BM2017.0048.

Butler, É., Oien, R. F., Lindholm, C., Olofsson, T. C., Nilson, B., & Vásquez, A. (2016). A pilot study investigating lactic acid bacterial symbionts from the honeybee in inhibiting human chronic wound pathogens. International Wound Journal, 13(5), 729–737. https://doi.org/10.1111/iwj.12360.

Daisley, B. A., Pitek, A. P., Chmiel, J. A., Gibbons, S., Chernyshova, A. M., Al, K. F., Reid, G. (2020). Lactobacillus spp. attenuate antibiotic-induced immune and microbiota dysregulation in honey bees. Communications biology, 3(1), 1-13. https://doi.org/10.1038/s42003-020-01259-8.

Endo, A., Irisawa, T., Futagawa–Endo, Y., Takano, K., du Toit, M., Okada, S., & Dicks, L. M. (2012). Characterization and emended description of Lactobacillus kunkeei as a fructophilic lactic acid bacterium. International journal of systematic and evolutionary microbiology, 62(Pt_3), 500–504. https://doi.org/10.1099/ijs.0.031054-0.

Ewnetu, Y., Lemma, W., & Birhane, N. (2013). Antibacterial effects of Apis mellifera and stingless bees honeys on susceptible and resistant strains of Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae in Gondar, Northwest Ethiopia. BMC complementary and alternative medicine, 13(1), 1–7. https://doi.org/10.1186/1472-6882-13-269.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic acids symposium series (Vol. 41, No. 41, pp. 95-98).

Huang, S. K., Ye, K. T., Huang, W. F., Ying, B. H., Su, X., Lin, L. H., Li, J. H., Chen, Y. P., Li, J. L., & Bao, X. L. (2018). Influence of feeding type and Nosema ceranae infection on the gut microbiota of Apis cerana workers. MSystems, 3(6), e00177–18. https://doi.org/10.1128/msystems.00177-18.

Huang, Y. H., Chen, Y. H., Chen, J. H., Hsu, P. S., Wu, T. H., Lin, C. F., Peng, C. C., & Wu, M.- C. (2021). A potential probiotic Leuconostoc mesenteroides TBE–8 for honey bee. Scientific reports, 11(1), 18466. https://doi.org/10.1038/s41598-021-97950-9.

Kwong, W. K., & Moran, N. A. (2016). Gut microbial communities of social bees. Nature Reviews Microbiology, 14(6), 374-384. https://doi.org/10.1038/nrmicro.2016.43.

Iorizzo, M., Letizia, F., Ganassi, S., Testa, B., Petrarca, S., Albanese, G., De Cristofaro, A. (2022). Functional properties and antimicrobial activity from lactic acid bacteria as resources to improve the health and welfare of honey bees. Insects, 13(3), 308. https://doi.org/10.3390/insects13030308.

Janashia, I., & Alaux, C. (2016). Specific immune stimulation by endogenous bacteria in honey bees (Hymenoptera: Apidae). Journal of economic entomology, 109(3), 1474–1477. https://doi.org/10.1093/jee/tow065.

Janashia, I., Carminati, D., Rossetti, L., Zago, M., Fornasari, M. E., Haertlé, T., Giraffa, G. (2016). Characterization of fructophilic lactic microbiota of Apis mellifera from the Caucasus Mountains. Annals of Microbiology, 66(4), 1387-1395. https://doi.org/10.1007/s13213-016-1226-2.

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular biology and evolution, 35(6), 1547. https://doi.org/10.1093/molbev/msy096.

Lanh PT, Duong BT, Thu HT, Hoa NT, and Van Quyen D. 2024. Comprehensive analysis of the microbiome in Apis cerana honey highlights honey as a potential source for the isolation of beneficial bacterial strains. PeerJ 12:e17157. https://doi.org/10.7717/peerj.17157.

Lashani, E., Davoodabadi, A., & Soltan Dallal, M. M. (2020). Some probiotic properties of Lactobacillusspecies isolated from honey and their antimicrobial activity against foodborne pathogens. Veterinary research forum: an international quarterly journal, 11(2), 121–126. https://doi.org/10.30466/vrf.2018.90418.2188.

Mathialagan, M., Edward, Y., David, P., Senthilkumar, M., Srinivasan, M., & Mohankumar, S. (2018). Isolation, characterization and identification of probiotic lactic acid bacteria (LAB) from honey bees. International J Current Microbiol Applied Sci, 7, 849–906. https://doi.org/10.20546/ijcmas.2018.704.096.

Motta, E. V., Powell, J. E., Leonard, S. P., & Moran, N. A. (2022). Prospects for probiotics in social bees. Philosophical Transactions of the Royal Society B, 377(1853), 20210156. https://doi.org/10.1098/rstb.2021.0156.

Mustar, S., & Ibrahim, N. (2022). A Sweeter Pill to Swallow: A Review of Honey Bees and Honey as a Source of Probiotic and Prebiotic Products. Foods, 11(14), 2102. https://doi.org/10.3390/foods11142102.

Olofsson, T. C., Butler, È., Markowicz, P., Lindholm, C., Larsson, L., & Vásquez, A. (2016). Lactic acid bacterial symbionts in honeybees–an unknown key to honey's antimicrobial and therapeutic activities. International Wound Journal, 13(5), 668-679. https://doi.org/10.1111/iwj.12345.

Pachla, A., Wicha, M., Ptaszyńska, A. A., Borsuk, G., Łaniewska–Trokenheim, Ł., & Małek, W. (2018). The molecular and phenotypic characterization of fructophilic lactic acid bacteria isolated from the guts of Apis mellifera L. derived from a Polish apiary. Journal of applied genetics, 59(4), 503-514. https://doi.org/10.1007/s13353-018-0467-0.

Ramos, O. Y., Basualdo, M., Libonatti, C., & Vega, M. F. (2020). Current status and application of lactic acid bacteria in animal production systems with a focus on bacteria from honey bee colonies. Journal of Applied Microbiology, 128(5), 1248-1260. https://doi.org/10.1111/jam.14469.

Rangberg, A., Mathiesen, G., Amdam, G., & Diep, D. (2015). The paratransgenic potential of Lactobacillus kunkeei in the honey bee Apis mellifera. Beneficial Microbes, 6(4), 513-523. https://doi.org/10.3920/BM2014.0115.

Raymann, K., & Moran, N. A. (2018). The role of the gut microbiome in health and disease of adult honey bee workers. Current opinion in insect science, 26, 97–104. https://doi.org/10.1016/j.cois.2018.02.012.

Royan, M. (2019). Mechanisms of probiotic action in the honeybee. Critical Reviews™ in Eukaryotic Gene Expression, 29(2). Royan M. (2019). Mechanisms of Probiotic Action in the Honeybee. Critical reviews in eukaryotic gene expression, 29(2), 95–103. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2019025358.

Sabaté, D., Cruz, M., Benítez–Ahrendts, M., & Audisio, M. (2012). Beneficial effects of Bacillus subtilis subsp. subtilis Mori2, a honey–associated strain, on honeybee colony performance. Probiotics and Antimicrobial Proteins, 4(1), 39–46. https://doi.org/10.1007/s12602-011-9089-0.

Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular biology and evolution, 4(4), 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.

Schell, K. R., Fernandes, K. E., Shanahan, E., Wilson, I., Blair, S. E., Carter, D. A., & Cokcetin, N. N. (2022). The Potential of Honey as a Prebiotic Food to Re-engineer the Gut Microbiome Toward a Healthy State. Frontiers in nutrition, 9, 957932. https://doi.org/10.3389/fnut.2022.957932.

Silva, M. S., Rabadzhiev, Y., Eller, M. R., Iliev, I., Ivanova, I., & Santana, W. C. (2017). Microorganisms in honey. Honey analysis, 500, 233–257. https://doi.org/10.5772/63259.

Tamura, K., Nei, M., & Kumar, S. (2004). Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences, 101(30), 11030-11035. https://doi.org/10.1073/pnas.0404206101.

Wu, Y., Zheng, Y., Chen, Y., Chen, G., Zheng, H., & Hu, F. (2020). Apis cerana gut microbiota contribute to host health though stimulating host immune system and strengthening host resistance to Nosema ceranae. Royal Society open science, 7(5), 192100. https://doi.org/10.1098/rsos.192100.

Zheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences, 114(18), 4775–4780. https://doi.org/10.1073/pnas.1701819114.

Downloads

Published

30-06-2024

How to Cite

Quyen, D. V., Lanh, P. T., & Ha Thi Thu. (2024). Isolation and characterization of beneficial bacteria from <i>Apis Cerana</i> honeybees from Hanoi, Vietnam. Vietnam Journal of Biotechnology, 22(2), 367–381. https://doi.org/10.15625/vjbt-21245

Issue

Section

Articles

Funding data