Regulation of yeast RAD9 gene in energy charge, intracellular ROS, and cell cycle arrest in response to DNA damage

Bui Van Ngoc, Le Thanh Hoa
Author affiliations

Authors

  • Bui Van Ngoc \(^1\) Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.
    \(^2\) Graduate University of Science and Technology (GUST), VAST, Hanoi, Vietnam.
    https://orcid.org/0000-0002-4659-7338
  • Le Thanh Hoa \(^1\) Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi, Vietnam.
    \(^2\) Graduate University of Science and Technology (GUST), VAST, Hanoi, Vietnam.

DOI:

https://doi.org/10.15625/vjbt-21211

Keywords:

cell cycle arrest, DNA damage, MMS, ROS, RAD9, yeast

Abstract

In various environmental conditions, eukaryotic cells are exposed to many kinds of exogenous toxic agents as well as to endogenous agents like reactive oxygen species (ROS) generated from oxidative metabolism that can all result in damage to DNA. To cope with these types of damage, yeast cells have evolved a number of mechanisms and specific response systems regulated by key control genes. One of which is RAD9 gene that regulates DNA damage and repair checkpoints, and cell cycle arrest. Thus, a series of methods, e.g. oxygen consumption monitoring, physicochemical analysis, and flow cytometry, were used in the present study to investigate the role of the RAD9 gene by using the BY4742 (wild type) and specific knock-out yeast strains (∆rad9) and elucidate the function of this gene in cellular defense mechanism and metabolic response to DNA damage triggered by methyl methanesulfonate (MMS) treatment. The results indicated that fully functional DNA damage repair and cell cycle checkpoint (RAD9, wild type) significantly enhanced mitochondrial activity and oxygen consumption, reduced intracellular ROS accumulation. Fully functional mitochondria attenuated ROS accumulation, enabled efficient mitochondrial electron transport chain (mtETC) and ATP synthesis, and stabilized cellular energy status. Also, high mitochondrial activity acted as a protective mechanism against oxidative stress. In contrast, deletion of the RAD9 (∆rad9) resulted in high ROS accumulation and damaged to mitochondrial DNA, leading to strong inhibition of mitochondrial activity and oxygen consumption. Furthermore, low mitochondrial activity in cells lacking RAD9 (∆rad9) led to the development of oxidative stress. Subsequently, high ROS accumulation in ∆rad9 cells caused a block of the mtETC, repression of ATP synthesis, fluctuation of cellular energy status, and induction of cell cycle arrest at S and G2/M phases.

Downloads

Download data is not yet available.

References

Atkinson, D. E. (1968). The Energy Charge of the Adenylate Pool as a Regulatory Parameter. Interaction with Feedback Modifiers. Biochemistry, 7(11), 4030–4034. https://doi.org/10.1021/bi00851a033

Bellí, G., Colomina, N., Castells-Roca, L., & Lorite, N. P. (2022). Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J. Fungi, 8(6), 621. https://doi.org/10.3390/jof8060621

Berg, J., Tymoczko, J., & Stryer, L. (2002a). Biochemistry. 5th Edition, New York: W H Freeman. In New York: W H Freeman.

Berg, J., Tymoczko, J., & Stryer, L. (2002b). Biochemistry. 5th Edition, New York: W H Freeman. In New York W H Free.

Bierle, L. A., Reich, K. L., Taylor, B. E., Blatt, E. B., Middleton, S. M., Burke, S. D., Stultz, L. K., Hanson, P. K., Partridge, J. F., & Miller, M. E. (2015). DNA damage response checkpoint activation drives KP1019 dependent pre-anaphase cell cycle delay in S. cerevisiae. PLoS One, 10(9), e0138085. https://doi.org/10.1371/journal.pone.0138085

Bui, V. N., Nguyen, T. P. T., Nguyen, H. D., Phi, Q. T., Nguyen, T. N., & Chu, H. H. (2024). Bioactivity responses to changes in mucus-associated bacterial composition between healthy and bleached Porites lobata corals. J. Invertebr. Pathol., 206, 108164. https://doi.org/10.1016/j.jip.2024.108164

Canete, J. A., Andrés, S., Muñoz, S., Zamarreño, J., Rodríguez, S., Díaz-Cuervo, H., Bueno, A., & Sacristán, M. P. (2023). Fission yeast Cdc14-like phosphatase Flp1/Clp1 modulates the transcriptional response to oxidative stress. Sci. Rep., 13(1), 14677. https://doi.org/10.1038/s41598-023-41869-w

Chenna, S., Koopman, W. J. H., Prehn, J. H. M., & Connolly, N. M. C. (2022). Mechanisms and mathematical modeling of ROS production by the mitochondrial electron transport chain. Am. J. Physiol. - Cell Physiol., 1, C69–C83. https://doi.org/10.1152/ajpcell.00455.2021

Cui, H., Kong, Y., & Zhang, H. (2012). Oxidative Stress, Mitochondrial Dysfunction, and Aging. J. Signal Transduct., 2012, 646354. https://doi.org/10.1155/2012/646354

Dhingra, N., Wei, L., & Zhao, X. (2019). Replication protein A (RPA) sumoylation positively influences the DNA damage checkpoint response in yeast. J. Biol. Chem., 294(8), 2690–2699. https://doi.org/10.1074/jbc.RA118.006006

Dixon, H., & Norbury, C. J. (2002). Therapeutic exploitation of checkpoint defects in cancer cells lacking p53 function. In Cell cycle (Georgetown, Tex.) (Vol. 1, Issue 6). https://doi.org/10.4161/cc.1.6.257

Engeland, K. (2018). Cell cycle arrest through indirect transcriptional repression by p53: I have a DREAM. In Cell Death and Differentiation (Vol. 25, Issue 1). https://doi.org/10.1038/cdd.2017.172

Ferrari, M., Rawal, C. C., Lodovichi, S., Vietri, M. Y., & Pellicioli, A. (2020). Rad9/53BP1 promotes DNA repair via crossover recombination by limiting the Sgs1 and Mph1 helicases. Nat. Commun., 11(1), 3181. https://doi.org/10.1038/s41467-020-16997-w

Groth, P., Ausländer, S., Majumder, M. M., Schultz, N., Johansson, F., Petermann, E., & Helleday, T. (2010). Methylated DNA Causes a Physical Block to Replication Forks Independently of Damage Signalling, O6-Methylguanine or DNA Single-Strand Breaks and Results in DNA Damage. J. Mol. Biol., 402(1), 70–82. https://doi.org/10.1016/j.jmb.2010.07.010

Guaragnella, N., Palermo, V., Galli, A., Moro, L., Mazzoni, C., & Giannattasio, S. (2014). The expanding role of yeast in cancer research and diagnosis: Insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res., 14(1), 2–16. https://doi.org/10.1111/1567-1364.12094

Hartwell, L. H. (2002). NOBEL LECTURE: Yeast and Cancer. Biosci. Rep., 22(3–4), 373–394. https://doi.org/10.1023/a:1020918107706

Hu, Z., Liu, Y., Zhang, C., Zhao, Y., He, W., Han, L., Yang, L., Hopkins, K. M., Yang, X., Lieberman, H. B., & Hang, H. (2008). Targeted deletion of Rad9 in mouse skin keratinocytes enhances genotoxin-induced tumor development. Cancer Res., 68(14), 5552–5561. https://doi.org/10.1158/0008-5472.CAN-07-5670

Katheeja, M. N., Das, S. P., & Laha, S. (2021). The budding yeast protein Chl1p is required for delaying progression through G1/S phase after DNA damage. Cell Div., 16(1), 4. https://doi.org/10.1186/s13008-021-00072-x

Kitanovic, A., Walther, T., Loret, M. O., Holzwarth, J., Kitanovic, I., Bonowski, F., Bui, N. V., Francois, J. M., & Wölfl, S. (2009). Metabolic response to MMS-mediated DNA damage in Saccharomyces cerevisiae is dependent on the glucose concentration in the medium. FEMS Yeast Res., 9(4), 535–551. https://doi.org/10.1111/j.1567-1364.2009.00505.x

Kurita, H., Haruta, N., Uchihashi, Y., Seto, T., & Takashima, K. (2020). Strand breaks and chemical modification of intracellular DNA induced by cold atmospheric pressure plasma irradiation. PLoS One, 15(5), e0232724. https://doi.org/10.1371/journal.pone.0232724

Loret, M. O., Pedersen, L., & François, J. (2007). Revised procedures for yeast metabolites extraction: Application to a glucose pulse to carbon-limited yeast cultures, which reveals a transient activation of the purine salvage pathway. Yeast, 24(1), 47–60. https://doi.org/10.1002/yea.1435

Marei, H. E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., Morrione, A., Giordano, A., & Cenciarelli, C. (2021). P53 signaling in cancer progression and therapy. In Cancer Cell International (Vol. 21, Issue 1). https://doi.org/10.1186/s12935-021-02396-8

Mello, S. S., Valente, L. J., Raj, N., Seoane, J. A., Flowers, B. M., McClendon, J., Bieging-Rolett, K. T., Lee, J., Ivanochko, D., Kozak, M. M., Chang, D. T., Longacre, T. A., Koong, A. C., Arrowsmith, C. H., Kim, S. K., Vogel, H., Wood, L. D., Hruban, R. H., Curtis, C., & Attardi, L. D. (2017). A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell, 32(4), 460–473. https://doi.org/10.1016/j.ccell.2017.09.007

Mihoubi, W., Sahli, E., Gargouri, A., & Amiel, C. (2017). FTIR spectroscopy of whole cells for the monitoring of yeast apoptosis mediated by p53 over-expression and its suppression by Nigella sativa extracts. PLoS One, 12(7), e0180680. https://doi.org/10.1371/journal.pone.0180680Navadgi-Patil, V. M., & Burgers, P. M. (2008). Yeast DNA replication protein Dpb11 activates the Mec1/ATR checkpoint kinase. J. Biol. Chem., 283(51), 35853–35859. https://doi.org/10.1074/jbc.M807435200

Pizzul, P., Casari, E., Gnugnoli, M., Rinaldi, C., Corallo, F., & Longhese, M. P. (2022). The DNA damage checkpoint: A tale from budding yeast. Front. Genet., 13. https://doi.org/10.3389/fgene.2022.995163

Ribeiro, G. F., Côrte-Real, M., & Johansson, B. (2006). Characterization of DNA damage in yeast apoptosis induced by hydrogen peroxide, acetic acid, and hyperosmotic shock. Mol. Biol. Cell, 17(10), 4584–4591. https://doi.org/10.1091/mbc.E06-05-0475

Ritter, J. B., Genzel, Y., & Reichl, U. (2006). High-performance anion-exchange chromatography using on-line electrolytic eluent generation for the determination of more than 25 intermediates from energy metabolism of mammalian cells in culture. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 843(2), 216–226. https://doi.org/10.1016/j.jchromb.2006.06.004

Salmon, T. B., Evert, B. A., Song, B., & Doetsch, P. W. (2004). Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res., 32(12), 3712–3723. https://doi.org/10.1093/nar/gkh696

Schwarz, L. V., Sandri, F. K., Scariot, F., Delamare, A. P. L., Valera, M. J., Carrau, F., & Echeverrigaray, S. (2023). High nitrogen concentration causes G2/M arrest in Hanseniaspora vineae. Yeast, 40(12), 640–650. https://doi.org/10.1002/yea.3911

Senoo, T., Yamanaka, M., Nakamura, A., Terashita, T., Kawano, S., & Ikeda, S. (2016). Quantitative PCR for detection of DNA damage in mitochondrial DNA of the fission yeast Schizosaccharomyces pombe. J. Microbiol. Methods, 127, 77–81. https://doi.org/10.1016/j.mimet.2016.05.023

Shokolenko, I., Venediktova, N., Bochkareva, A., Wilson, G. I., & Alexeyev, M. F. (2009). Oxidative stress induces degradation of mitochondrial DNA. Nucleic Acids Res., 37(8), 2539–2548. https://doi.org/10.1093/nar/gkp100

Siler, J., Xia, B., Wong, C., Kath, M., & Bi, X. (2017). Cell cycle-dependent positive and negative functions of Fun30 chromatin remodeler in DNA damage response. DNA Repair (Amst)., 50, 61–70. https://doi.org/10.1016/j.dnarep.2016.12.009

Sjölander, J. J., & Sunnerhagen, P. (2020). The fission yeast FHIT homolog affects checkpoint control of proliferation and is regulated by mitochondrial electron transport. Cell Biol. Int., 44(2), 412–423. https://doi.org/10.1002/cbin.11241

Stenberg, S., Li, J., Gjuvsland, A. B., Persson, K., Demitz-Helin, E., Gonzalez-Pena, C., Yue, J. X., Gilchrist, C., Ärengård, T., Ghiaci, P., Larsson-Berglund, L., Zackrisson, M., Smits, S., Hallin, J., Höög, J. L., Molin, M., Liti, G., Omholt, S. W., & Warringer, J. (2022). Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation. Elife, 11, 10.7554/elife.76095. https://doi.org/10.7554/elife.76095

Van Houten, B., Woshner, V., & Santos, J. H. (2006). Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair (Amst)., 5(2), 145–152. https://doi.org/10.1016/j.dnarep.2005.03.002

van Os, N. J. H., van Deuren, M., Weemaes, C. M. R., van Gaalen, J., Hijdra, H., Taylor, A. M. R., van de Warrenburg, B. P. C., & Willemsen, M. A. A. P. (2020). Classic ataxia-telangiectasia: The phenotype of long-term survivors. Journal of Neurology, 267(3). https://doi.org/10.1007/s00415-019-09641-1

Waterman, D. P., Haber, J. E., & Smolka, M. B. (2020). Checkpoint Responses to DNA Double-Strand Breaks. Annu. Rev. Biochem., 89, 103–133. https://doi.org/10.1146/annurev-biochem-011520-104722

Whalley, N. A., Walters, S., & Hammond, K. (2018). Molecular Cell Biology. In Mol. Med. Clin. https://doi.org/10.18772/22008014655.9

Yao, S., Feng, Y., Zhang, Y., & Feng, J. (2021). DNA damage checkpoint and repair: From the budding yeast Saccharomyces cerevisiae to the pathogenic fungus Candida albicans. Comput. Struct. Biotechnol. J., 19, 6343–6354. https://doi.org/10.1016/j.csbj.2021.11.033

Downloads

Published

30-09-2024

How to Cite

Ngoc, B. V., & Hoa, L. T. (2024). Regulation of yeast <i>RAD9</i> gene in energy charge, intracellular ROS, and cell cycle arrest in response to DNA damage. Vietnam Journal of Biotechnology, 22(3), 507–522. https://doi.org/10.15625/vjbt-21211

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2