Discovery and characterization of cyclotides, plant-based peptides from Viola dalatensis Gadnep
Author affiliations
DOI:
https://doi.org/10.15625/vjbt-20876Keywords:
cyclotides, cyclic cystine knot, MS/MS, plant-based peptide, Viola dalatensis GadnepAbstract
Cyclotides demonstrate remarkable stability due to their unique characteristic - the cyclic cystine knot motif. Cyclotides exhibit a wide range of biological activities. This study aims to explore the presence of cyclotides in Viola dalatensis Gadnep, a plant indigenous to Vietnam, through the utilization of LC-MS and LC-MS/MS techniques. We conducted a comprehensive analysis of three extraction methods: 50% acetonitrile with 1% formic acid, 70% ethanol, and 50% methanol. The initial method is extremely efficient for cyclotide extraction when utilizing LC-MS analysis. An ammonium sulfate salt concentration of 30% is used to enhance the cyclotide content and optimize the RP-HPLC purification procedure. The precipitates demonstrate a notable advantage in terms of antibacterial properties compared to the extracts, particularly when the antibacterial concentration is decreased by a factor of four in comparison to the extracts. The combination of cyclotides demonstrated potent antimicrobial activity against Bacillus subtilis and Pseudomonas aeruginosa. The impact was most noticeable when the concentration of the cyclotide mixture was ten times lower than the precipitates. The inhibition zones for these bacteria measured 17.17 ± 2.24 mm and 20.23 ± 0.84 mm, respectively. The identification of the primary structure of nine cyclotides through LC-MS/MS analysis was successfully achieved.
Downloads
References
Al-Wrafy, F., Brzozowska, E., Górska, S., Gamian, A., (2017) Pathogenic factors of Pseudomonas aeruginosa - the role of biofilm in pathogenicity and as a target for phage therapy. Postepy Hig Med Dosw (Online) 71, 78-91 https://doi.org/10.5604/01.3001.0010.3792.
Casallanovo, F., de Oliveira, F.J., de Souza, F.C., Ros, U., Martínez, Y., Pentón, D., Tejuca, M., Martínez, D., Pazos, F., Pertinhez, T.A., Spisni, A., Cilli, E.M., Lanio, M.E., Alvarez, C., Schreier, S., (2006) Model peptides mimic the structure and function of the N-terminus of the pore-forming toxin sticholysin II. Biopolymers 84, 169-180 https://doi.org/10.1002/bip.20374.
Chiche, L., Heitz, A., Gelly, J.-C., Gracy, J., Chau, T.T.P., Ha, T.P., Hernandez, J.-F., Le-Nguyen, D., (2004) Squash inhibitors: from structural motifs to macrocyclic knottins. Current protein & peptide science 5, 341-349 https://doi.org/10.2174/1389203043379477.
Clark, R.J., Daly, N.L., Craik, D.J., (2006) Structural plasticity of the cyclic-cystine-knot framework: implications for biological activity and drug design. Biochem J 394, 85-93 https://doi.org/10.1042/bj20051691.
Craik, D.J., Daly, N.L., Bond, T., Waine, C., (1999) Plant cyclotides: A unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 https://doi.org/10.1006/jmbi.1999.3383.
Daly, N.L., Wilson, D.T., (2021) Plant derived cyclic peptides. Biochem Soc Trans 49, 1279-1285 https://doi.org/10.1042/bst20200881.
Dang, T.T., Chan, L.Y., Huang, Y.H., Nguyen, L.T.T., Kaas, Q., Huynh, T., Craik, D.J., (2020) Exploring the Sequence Diversity of Cyclotides from Vietnamese Viola Species. J. Nat. Prod. 83, 1817-1828 https://doi.org/10.1021/acs.jnatprod.9b01218.
Dang, T.T., Chan, L.Y., Tombling, B.J., Harvey, P.J., Gilding, E.K., Craik, D.J., (2021) In Planta Discovery and Chemical Synthesis of Bracelet Cystine Knot Peptides from Rinorea bengalensis. J Nat Prod 84, 395-407 https://doi.org/10.1021/acs.jnatprod.0c01065.
Dang, T.T., Tran, T.T.T., Tran, G.-H., Pham, S.H., Nguyen, T.H.N., (2024) Cyclotides derived from Viola dalatensis Gagnep: A novel approach for enrichment and evaluation of antimicrobial activity. Toxicon 239, 107606 https://doi.org/10.1016/j.toxicon.2024.107606.
Duong-Ly, K.C., Gabelli, S.B., (2014) Salting out of proteins using ammonium sulfate precipitation. Methods Enzymol 541, 85-94 https://doi.org/10.1016/b978-0-12-420119-4.00007-0.
Felizmenio-Quimio, M.E., Daly, N.L., Craik, D.J., (2001) Circular proteins in plants: solution structure of a novel macrocyclic trypsin inhibitor from Momordica cochinchinensis The Journal of biological chemistry 276, 22875-22882 https://doi.org/10.1074/jbc.M101666200.
Fernández-Bobey, A., Pinto, M.E.F., de Almeida, L.C., de Souza, B.M., Dias, N.B., de Paula-Souza, J., Cilli, E.M., Lopes, N.P., Costa-Lotufo, L.V., Palma, M.S., da Silva Bolzani, V., (2022) Cytotoxic Cyclotides from Anchietea pyrifolia, a South American Plant Species. J Nat Prod 85, 2127-2134 https://doi.org/10.1021/acs.jnatprod.1c01129.
Ganesan, R., Dughbaj, M.A., Ramirez, L., Beringer, S., Aboye, T.L., Shekhtman, A., Beringer, P.M., Camarero, J.A., (2021) Engineered Cyclotides with Potent Broad in Vitro and in Vivo Antimicrobial Activity. Chemistry 27, 12702-12708 https://doi.org/10.1002/chem.202101438.
Göransson, U., Sjögren, M., Svangård, E., Claeson, P., Bohlin, L., (2004) Reversible antifouling effect of the cyclotide cycloviolacin O2 against barnacles. J. Nat. Prod. 67, 1287–1290 https://doi.org/10.1021/np0499719.
Heitz, A., Hernandez, J.-F., Gagnon, J., Hong, T.T., Pham, T.T.C., Nguyen, T.M., Le-Nguyen, D., Chiche, L., (2001) Solution structure of the squash trypsin inhibitor MCoTI-II. A new family for cyclic knottins. Biochemistry 40, 7973-7983 https://doi.org/10.1021/bi0106639.
Henriques, S.T., Huang, Y.H., Rosengren, K.J., Franquelim, H.G., Carvalho, F.A., Johnson, A., Sonza, S., Tachedjian, G., Castanho, M.A., Daly, N.L., Craik, D.J., (2011) Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. J Biol Chem 286, 24231-24241 https://doi.org/10.1074/jbc.M111.253393.
Herrmann, A., Burman, R., Mylne, J.S., Karlsson, G., Gullbo, J., Craik, D.J., Clark, R.J., Göransson, U., (2008) The alpine violet, Viola biflora, is a rich source of cyclotides with potent cytotoxicity. Phytochemistry 69, 939-952 https://doi.org/10.1016/j.phytochem.2007.10.023.
Ho, T.N.T., Pham, S.H., Nguyen, L.T.T., Nguyen, H.T., Nguyen, L.T., Dang, T.T., (2023a) Insights into the synthesis strategies of plant-derived cyclotides. Amino Acids 55, 713-729 https://doi.org/10.1007/s00726-023-03271-8.
Ho, T.N.T., Turner, A., Pham, S.H., Nguyen, H.T., Nguyen, L.T.T., Nguyen, L.T., Dang, T.T., (2023b) Cysteine-rich peptides: From bioactivity to bioinsecticide applications. Toxicon 230, 107173 https://doi.org/10.1016/j.toxicon.2023.107173.
Huynh, N.T., Ho, T.N.T., Pham, Y.N.D., Dang, L.H., Pham, S.H., Dang, T.T., (2024) Immunosuppressive Cyclotides: A Promising Approach for Treating Autoimmune Diseases. The Protein Journal 43, 159-170 https://doi.org/10.1007/s10930-024-10188-y.
Ireland, D.C., Colgrave, M.L., Craik, D.J., (2006) A novel suite of cyclotides from Viola odorata: sequence variation and the implications for structure, function and stability. Biochem J 400, 1-12 https://doi.org/10.1042/bj20060627.
Jagadish, K., Camarero, J.A., (2010) Cyclotides, a promising molecular scaffold for peptide-based therapeutics. Biopolymers 94, 611-616 https://doi.org/10.1002/bip.21433.
Jung, C.H., Kim, J.H., Hong, M.H., Seog, H.M., Oh, S.H., Lee, P.J., Kim, G.J., Kim, H.M., Um, J.Y., Ko, S.G., (2007) Phenolic-rich fraction from Rhus verniciflua Stokes (RVS) suppress inflammatory response via NF-kappaB and JNK pathway in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 110, 490-497 https://doi.org/10.1016/j.jep.2006.10.013.
Khoshkam, Z., Zarrabi, M., Sepehrizade, Z., Keshavarzi, M., (2016) The Study of Antimicrobial Activities of Partially Purified Cyclotide Content and Crude Extracts from Viola tricolor. Journal of Medical Bacteriology 5, 29-35.
Kielkopf, C.L., Bauer, W., Urbatsch, I.L., (2020) Bradford Assay for Determining Protein Concentration. Cold Spring Harb Protoc 2020, 102269 https://doi.org/10.1101/pdb.prot102269.
Kim, K.H., Moon, E., Choi, S.U., Kim, S.Y., Lee, K.R., (2013a) Polyphenols from the bark of Rhus verniciflua and their biological evaluation on antitumor and anti-inflammatory activities. Phytochemistry 92, 113-121 https://doi.org/10.1016/j.phytochem.2013.05.005.
Kim, S.A., Kim, S.H., Kim, I.S., Lee, D., Dong, M.S., Na, C.S., Nhiem, N.X., Yoo, H.H., (2013b) Simultaneous determination of bioactive phenolic compounds in the stem extract of Rhus verniciflua stokes by high performance liquid chromatography. Food Chem 141, 3813-3819 https://doi.org/10.1016/j.foodchem.2013.06.068.
Koehbach, J., Attah, A.F., Berger, A., Hellinger, R., Kutchan, T.M., Carpenter, E.J., Rolf, M., Sonibare, M.A., Moody, J.O., Wong, G.K., Dessein, S., Greger, H., Gruber, C.W., (2013) Cyclotide discovery in Gentianales revisited--identification and characterization of cyclic cystine-knot peptides and their phylogenetic distribution in Rubiaceae plants. Biopolymers 100, 438-452 https://doi.org/10.1002/bip.22328.
Mahatmanto, T., Mylne, J.S., Poth, A.G., Swedberg, J.E., Kaas, Q., Schaefer, H., Craik, D.J., (2015) The evolution of Momordica cyclic peptides. Mol Biol Evol 32, 392-405 https://doi.org/10.1093/molbev/msu307.
Manso, T., Lores, M., de Miguel, T., (2021) Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics (Basel) 11 https://doi.org/10.3390/antibiotics11010046.
Marcussen, T., Ballard, H.E., Danihelka, J., Flores, A.R., Nicola, M.V., Watson, J.M., (2022) A Revised Phylogenetic Classification for Viola (Violaceae). Plants (Basel) 11 https://doi.org/10.3390/plants11172224.
Miklasińska-Majdanik, M., Kępa, M., Wojtyczka, R.D., Idzik, D., Wąsik, T.J., (2018) Phenolic Compounds Diminish Antibiotic Resistance of Staphylococcus Aureus Clinical Strains. Int J Environ Res Public Health 15 https://doi.org/10.3390/ijerph15102321.
Nguyen, G.K., Zhang, S., Nguyen, N.T., Nguyen, P.Q., Chiu, M.S., Hardjojo, A., Tam, J.P., (2011) Discovery and characterization of novel cyclotides originated from chimeric precursors consisting of albumin-1 chain a and cyclotide domains in the Fabaceae family. J Biol Chem 286, 24275-24287 https://doi.org/10.1074/jbc.M111.229922.
Nguyen, K.N.T., Nguyen, G.K.T., Nguyen, P.Q.T., Ang, K.H., Dedon, P.C., Tam, J.P., (2016) Immunostimulating and Gram-negative-specific antibacterial cyclotides from the butterfly pea (Clitoria ternatea). FEBS J. 283, 2067–2090 https://doi.org/10.1111/febs.13720.
Pinto, M.E.F., Chan, L.Y., Koehbach, J., Devi, S., Gründemann, C., Gruber, C.W., Gomes, M., Bolzani, V.S., Cilli, E.M., Craik, D.J., (2021) Cyclotides from Brazilian Palicourea sessilis and Their Effects on Human Lymphocytes. J Nat Prod 84, 81-90 https://doi.org/10.1021/acs.jnatprod.0c01069.
Pinto, M.F.S., Fensterseifer, I.C.M., Migliolo, L., Sousa, D.A., de Capdville, G., Arboleda-Valencia, J.W., Colgrave, M.L., Craik, D.J., Magalhaes, B.S., Dias, S.C., Franco, O.L., (2012) Identification and structural characterization of novel cyclotide with activity against an insect pest of sugar cane. J. Biol. Chem. 287, 134–147 https://doi.org/10.1074/jbc.M111.294009.
Plan, M.R.R., Saska, I., Cagauan, A.G., Craik, D.J., (2008) Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail). J. Agric. Food Chem. 56, 5237–5241 https://doi.org/10.1021/jf800302f.
Porto, W.F., Pires, A.S., Franco, O.L., (2012) CS-AMPPred: An updated SVM model for antimicrobial activity prediction in cysteine-stabilized peptides. PLoS One 7, e51444 https://doi.org/10.1371/journal.pone.0051444.
Poth, A.G., Colgrave, M.L., Lyons, R.E., Daly, N.L., Craik, D.J., (2011a) Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proc Natl Acad Sci U S A 108, 10127-10132 https://doi.org/10.1073/pnas.1103660108.
Poth, A.G., Colgrave, M.L., Philip, R., Kerenga, B., Daly, N.L., Anderson, M.A., Craik, D.J., (2011b) Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS Chem Biol 6, 345-355 https://doi.org/10.1021/cb100388j.
Prakash, M., Shetty, J.K., Dash, S., Barik, B.K., Sarkar, A., Prabhu, R., (2008) Determination of urinary peptides in patients with proteinuria. Indian J Nephrol 18, 150-154 https://doi.org/10.4103/0971-4065.45289.
Samuelsson, G., Kyerematen, G., Farah, M.H., (1985) Preliminary chemical characterization of pharmacologically active compounds in aqueous plant extracts. J Ethnopharmacol 14, 193-201 https://doi.org/10.1016/0378-8741(85)90087-x.
Santa-Coloma, T.A., Bley, M.A., Charreau, E.H., (1987) Improvement on the competitive binding assay for the measurement of cyclic AMP by using ammonium sulphate precipitation. Biochem J 245, 923-924 https://doi.org/10.1042/bj2450923.
Simonsen, S.M., Sando, L., Ireland, D.C., Colgrave, M.L., Bharathi, R., Göransson, U., Craik, D.J., (2005) A continent of plant defense peptide diversity: Cyclotides in Australian Hybanthus (Violaceae). Plant Cell 17, 3176–3189 https://doi.org/10.1105/tpc.105.034678.
Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I., Bahorun, T., (2005) Phenolics as potential antioxidant therapeutic agents: mechanism and actions. Mutat Res 579, 200-213 https://doi.org/10.1016/j.mrfmmm.2005.03.023.
Tran, G.-H., Tran, T.-H., Pham, S.H., Xuan, H.L., Dang, T.T., (2024) Cyclotides: The next generation in biopesticide development for eco-friendly agriculture. J. Pept. Sci. 30, e3570 https://doi.org/https://doi.org/10.1002/psc.3570.
Tran, T.T.T., Tran, G.-H., Cu, S.T., Pham, S.H., Nguyen, T.H.N., Dang, T.T., (2023) Cyclotides, Cyclic Peptides Derived from Clitoria ternatea Linn Mature Pods, Hold Promise as Potential Antimicrobial Agent. ChemistrySelect 8, e202303969 https://doi.org/https://doi.org/10.1002/slct.202303969.
Troeira Henriques, S., Craik, D.J., (2017) Cyclotide Structure and Function: The Role of Membrane Binding and Permeation. Biochemistry 56, 669-682 https://doi.org/10.1021/acs.biochem.6b01212.
Weidmann, J., Craik, D.J., (2016) Discovery, structure, function, and applications of cyclotides: circular proteins from plants. J Exp Bot 67, 4801-4812 https://doi.org/10.1093/jxb/erw210.
Zarrabi, M., Dalirfardouei, R., Sepehrizade, Z., Kermanshahi, R.K., (2013) Comparison of the antimicrobial effects of semipurified cyclotides from Iranian Viola odorata against some of plant and human pathogenic bacteria. J. Appl. Microbiol. 115, 367-375 https://doi.org/10.1111/jam.12251.
Downloads
Published
How to Cite
Issue
Section
Funding data
-
Vietnam Academy of Science and Technology
Grant numbers ĐLTE00.06/23-24