Isolation and phylogenetic analysis of Staphylococcus aureus strains isolated from meat in traditional markets in Ha Noi

Dong Van Quyen, Pham Thi Lanh, Lee Gahyun, Nguyen Thi Hoa, Man Hong Phuoc
Author affiliations

Authors

  • Dong Van Quyen Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Pham Thi Lanh Institute of Biotechnology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
  • Lee Gahyun University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology
  • Nguyen Thi Hoa Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Man Hong Phuoc Institute of Biotechnology, Vietnam Academy of Science and Technology. 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/21635

Abstract

Staphylococcus aureus is a major cause of foodborne illness worldwide, causing diarrhea and vomiting. The rising number of S. aureus food poisoning cases in Vietnam underscores the urgent need for effective control strategies, particularly given the bacterium’s growing antibiotic resistance, complicating treatment options. This study investigates the public health risks posed by S. aureus in meat samples collected from traditional markets in Hanoi, Vietnam. A total of 30 bacterial isolates were obtained, of which six were identified as S. aureus using MALDI-TOF MS and confirmed through hemolysis testing and 16S rRNA sequencing. These isolates exhibited strong beta-hemolysis, indicating alpha-toxin production and their pathogenic potential. Notably, the antibiotic susceptibility test revealed that some isolated strains displayed varying levels of resistance to commonly used antibiotics, including aztreonam, streptomycin, amoxicillin, amikacin, and enrofloxacin. However, their uniform susceptibility to florfenicol, ceftiofur, doxycycline, and chloramphenicol suggests that these antibiotics remain effective for treating S. aureus infections in this region. Phylogenetic analysis revealed a high degree of genetic similarity between the isolated strains and globally distributed S. aureus strains associated with foodborne outbreaks in India, Korea, Japan, and Brazil, highlighting the potential for international transmission. These findings highlight the need for ongoing surveillance, improved food safety measures, and the development of updated antibiotic treatment protocols to manage the risks of S. aureus in the food supply.

Downloads

Metrics

PDF views
33

References

Berube B. J. & Wardenburg J. B., 2013. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue. Toxins, 5(6): 1140−1166. https://doi.org/10.3390/toxins 5061140

Bintsis T., 2017. Foodborne pathogens. AIMS Microbiol, 3(3): 529−563. https://doi.org/ 10.3934/microbiol.2017.3.529

Bordier M., Binot A., Pauchard Q., Nguyen D. T., Trung T. N., Fortané N. & Goutard F. L., 2018. Antibiotic resistance in Vietnam: moving towards a One Health surveillance system. BMC Public Health, 18(1): 1136. https://doi.org/10.1186/s12889-018-6022-4

Clark C. G., Kruczkiewicz P., Guan C., McCorrister S. J., Chong P., Wylie J., van Caeseele P., Tabor H. A., Snarr P., Gilmour M. W., Taboada E. N. & Westmacott G. R., 2013. Evaluation of MALDI-TOF mass spectroscopy methods for determination of Escherichia coli pathotypes. Journal of Microbiological Methods, 94(3): 180−191. https://doi.org/ 10.1128/JCM.00593-15

Dalhoff A., 2012. Global fluoroquinolone resistance epidemiology and implictions for clinical use. Interdiscip Perspect Infect Dis, 2012: 976273. https://doi.org/ 10.1155/2012/976273

Dho-Moulin M. & Fairbrother J. M. 1999. Avian pathogenic Escherichia coli (APEC). Veterinary research, 30(2–3): 299−316.

Foster, 1996. Staphylococcus (4th edition ed.). University of Texas Medical Branch at Galveston. Staphylococcus - Medical Microbiology - NCBI Bookshelf.

Hennekinne J.-A., De Buyser M.-L. & Dragacci S., 2012. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiology Reviews, 36(4): 815−836. https://doi.org/10.1111/j.1574-6976.2011.00311.x

Kim S., 2024. Food poisoning outbreak at a Korean-owned factory in Vietnam. Korea Economic Daily. https://www.hanky-ung.com/article/2024051639497

Krimmer V., Merkert H., Eiff C. V., Frosch M., Eulert J., Löhr J. F., Hacker J. & Ziebuhr W., 1999. Detection of Staphylococcus aureus and Staphylococcus epidermidis in Clinical Samples by 16S rRNA-Directed In Situ Hybridization. Journal of Clinical Microbiology, 37(8): 2667−2673. https://doi.org/10.1128/JCM.37.8.2667-2673.1999

Lowy, F. D., 1998. Staphylococcus aureus Infections. New England Journal of Medicine, 339(8), 520−532. https://doi.org/ 10.1056/NEJM199808203390806

Nishikawa Y., Ogasawara J. & Kimura T., 1993. Heat and acid sensitivity of motile Aeromonas: a comparison with other food-poisoning bacteria. International Journal of Food Microbiology, 18(4): 271−278.

Patel R., 2015. MALDI-TOF MS for the diagnosis of infectious diseases. Clinical chemistry, 61(1): 100−111.

Puspitasari E. & Turista D. D. R., 2019. The Growth of Staphylococcus aureus in the blood agar plate media of sheep blood and human blood groups A, B, AB, and O. Jurnal Teknologi Laboratorium, 8(1): 1−7. https://doi.org/10.29238/teknolabjournal.v8i1.155

Samir H., Younis W., Sultan S. & Abd El-Azeem M., 2018. Isolation of Staphylococcus aureus from ice-cream samples. Journal of Veterinary and Animal Research, 1(2): 204.

Schreckenberger P. C. & Binnicker M. J., 2011. Optimizing Antimicrobial Susceptibility Test Reporting. Journal of Clinical Microbiology, 49(9_Supplement): S15–S19. https://doi.org/10.1128/JCM.00712-11

Singhal N., Kumar M., Kanaujia P. K. & Virdi J. S., 2015. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol, 6: 791. https://doi.org/10.3389/fmicb.2015.00791

Sola-Gines M., Cameron-Veas K., Badiola I., Dolz R., Majo N., Dahbi G., Viso S., Mora A., Blanco J., Piedra-Carrasco N., Gonzalez-Lopez J. J. & Migura-Garcia L., 2015. Diversity of Multi-Drug Resistant Avian Pathogenic Escherichia coli (APEC) Causing Outbreaks of Colibacillosis in Broilers during 2012 in Spain. PLoS One, 10(11): e0143191. https://doi.org/10.1371/ journal.pone.0143191

TEMMYO R., 1966. Studies on the prevention of outbreaks of food poisoning caused by Vibrio parahaemolyticus. The Bulletin of Tokyo Medical and Dental University, 13(4): 489−510.

Vijay N., Ranu A., Dev Vrat K., Ajay Kumar G. & Lokendra S., 2007. Isolation and characterization of heat resistant enterotoxigenic Staphylococcus aureus from a food poisoning outbreak in the Indian subcontinent. International Journal of Food Microbiology, 117(1): 29−35. https://doi.org/10.1016/j.ijfoodmicro.2007.01.015

Zangerl P. A. A., hans., 2003. Chapter 6 Media used in the detection and enumeration of Staphylococcus aureus. Vol. 37. https://doi.org/10.1016/S0079-6352(03)80009-7

Downloads

Published

27-03-2025

How to Cite

Quyen, D. V., Lanh, P. T., Gahyun, L., Hoa, N. T., & Phuoc, M. H. (2025). Isolation and phylogenetic analysis of <em> Staphylococcus aureus </em> strains isolated from meat in traditional markets in Ha Noi. Academia Journal of Biology, 47(1), 63–74. https://doi.org/10.15625/2615-9023/21635

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >>