Characterization of endophytic bacteria in Vietnamese rice seeds

Mai Thi Phuong Nga, Nguyen Van Phuong
Author affiliations

Authors

  • Mai Thi Phuong Nga University of Science and Technology of Hanoi (USTH)
  • Nguyen Van Phuong University of Science and Technology of Hanoi (USTH)

DOI:

https://doi.org/10.15625/2615-9023/20866

Keywords:

Auxin synthesis, cellulase, endophytic bacteria, gelatinase production, phosphate solubilizing, rice, starch hydrolysis

Abstract

Rice is a staple food and is commonly used in daily life not only in Vietnam but worldwide. However, pests, diseases, and nutrient deficiencies are threatening Vietnam's rice production by causing significant damage. The endophytic bacteria (EB) which are isolated from plants, may help improve certain quality traits of rice seeds assist plants in coping with abiotic and biotic stresses from the environment. Therefore, this study aims to investigate some promising characteristics of EBs in rice seeds, including gelatinase production, starch hydrolysis, phosphate solubilizing, cellulase, and IAA synthesis. Rice seeds from various rice varieties were used to isolate the endophytic bacteria. The bacteria were grown in Petri dishes or glass test tubes in some selective media in a controlled environment to screen for investigated traits. A total of five EBs were isolated, and MALDI-TOF mass spectrometry with a log score of MALDI Biotypes greater than 2.0 was employed for bacterial identification. Interestingly, the results revealed that the bacteria in rice grains have a high ability to synthesize cellulase, hydrolyze starch and gelatin, and produce auxin. The highest cellulase activity was associated with Staphylococcus caprae while Micrococcus luteus exhibited maximum IAA hormon and gelatinase enzyme production. Starch hydrolysis was highest in Bacillus. However, these bacteria showed low phosphate solubilization ability. The promising bacteria identified in this study include Bacillus cereus,
M. luteus,
and Bacillus atrophaeus. The promising results from our study can be utilized for further in vivo studies in rice plants to develop biocontrol reagents and biofertilizers for agricultural applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abedinzadeh M., Etesami H. and Alikhani H., 2019. Characterization of rhizosphere and endophytic bacteria from roots of maize (Zea mays L.) plant irrigated with wastewater with biotechnological potential in agriculture. Biotechnol. Reports, 21: e00305. https://doi.org/10.1016/j.btre.2019. e00305 DOI: https://doi.org/10.1016/j.btre.2019.e00305

Afzal I., Shinwari Z. K., Sikandar S. and Shahzad S., 2019. Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiol. Res., 221: 36-49. https://doi.org/10.1016/J.MICRES.2019.02.001 DOI: https://doi.org/10.1016/j.micres.2019.02.001

Ahemad M. and Kibret M., 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King. Saud. Univ. - Sci., 26: 1–20. https://doi.org/10.1016/j.jksus.2013.05.001 DOI: https://doi.org/10.1016/j.jksus.2013.05.001

Ashitha A., Rakhimol K. R and Mathew J., 2021. “Chapter 2 - Fate of the conventional fertilizers in environment,” in Controlled Release Fertilizers for Sustainable Agriculture, Academic Press, eds. Lewu F. B., Volova T., Thomas S., and Rakhimol K. R: 25–39. https://doi.org/10.1016/B978-0-12-819555-0.00002-9 DOI: https://doi.org/10.1016/B978-0-12-819555-0.00002-9

Cappuccino J. and Welsh C., 2017. Microbiology: A Laboratory Manual. 11th edition. England: Pearson Education Limited.

Chantarasiri A., 2015. Aquatic Bacillus cereus JD0404 isolated from the muddy sediments of mangrove swamps in thailand and characterization of its cellulolytic activity. Egypt J Aquat Res., 41: 257–264. https://doi.org/10.1016/ j.ejar.2015.08.003 DOI: https://doi.org/10.1016/j.ejar.2015.08.003

Devi K. A., Pandey P. and Sharma G. D., 2016. Plant growth-promoting endophyte Serratia marcescens AL2-16 enhances the growth of Achyranthes aspera L., a medicinal plant. HAYATI J. Biosci., 23: 173–180. https://doi.org/10.1016/j.hjb. 2016.12.006 DOI: https://doi.org/10.1016/j.hjb.2016.12.006

El-Deeb B., Bazaid S., Gherbawy Y. and Elhariry H., 2011. Characterization of endophytic bacteria associated with rose plant (Rosa damascena trigintipeta) during flowering stage and their plant growth promoting traits. J. Plant Interact., 7: 248–253. https://doi.org/10.1080/ 17429145.2011.637161 DOI: https://doi.org/10.1080/17429145.2011.637161

Fukagawa N. K., and Ziska L. H., 2019. Rice: importance for global nutrition. J. Nutr. Sci. Vitaminol. (Tokyo), 65: S2–S3. https://doi.org/10.3177/JNSV.65.S2 DOI: https://doi.org/10.3177/jnsv.65.S2

Inoue K., Suzuki T., Ikeda K., Jiang S., Hosogi N., Hyong G. S., Hida S., Yamada T., Park P., 2007. Extracellular matrix of Magnaporthe oryzae may have a role in host adhesion during fungal penetration. J. Gen. Pathol., 73:388-398. https://doi.org/10.1007/s10327-007-0048-2 DOI: https://doi.org/10.1007/s10327-007-0048-2

Luu T., Phi Q., Nguyen T. T. H., Mai V. D., Pham B. N., Do Q. T., 2021. Antagonistic activity of endophytic bacteria isolated from weed plant against stem end rot pathogen of pitaya in Vietnam. Egypt J Biol Pest Control, 31: 14. https://doi.org/10.1186/s41938-021-00362-0 DOI: https://doi.org/10.1186/s41938-021-00362-0

Meryandini A., Wahyu W., Besty M., Titi C., Nisa R., Hasrul S., 2009. Isolation of cellulolytic bacteria and their enzyme characteristics makara sains. MAKARA Sci. Ser., 13: 33–38.

Nautiyal C., 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett., 170: 265–270. https://doi.org/ 10.1111/j.1574-6968.1999.tb13383.x DOI: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Nguyen V. P., Mai T. P. N., Mai D. C., Chu H. H. and Le T. B., 2022. In vitro screening of siderophore-producing rice root endophytic bacteria from up-land paddies in north-western Vietnam for plant growth-promoting activities. Malays. J. Microbiol: 18. https://doi.org/ 0.21161/mjm.211297 DOI: https://doi.org/10.21161/mjm.211297

O’Callaghan M., Ballard R. A. and Wright D., 2022. Soil microbial inoculants for sustainable agriculture: Limitations and opportunities. Soil Use Manag. Soil Use Manag: 38. https://doi.org/10.1111/ sum.12811 DOI: https://doi.org/10.1111/sum.12811

Olanrewaju O., Glick B. and Babalola O., 2017. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol., 33: 1–16. https://doi.org/10.1007/s11274-017-2364-9 DOI: https://doi.org/10.1007/s11274-017-2364-9

Oteino N., Lally R. D., Kiwanuka S., Lloyd A., Ryan D., Germaine K. J., et al., 2015. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol., 6: 745. https://doi.org/10.3389/fmicb. 2015.00745 DOI: https://doi.org/10.3389/fmicb.2015.00745

Pande P., Pandey P., Mehra S., Singh M. and Kaushik S., 2017. Phenotypic and genotypic characterization of phosphate solubilizing bacteria and their efficiency on the growth of maize. J Genet Eng Biotechnol., 15: 379–391. https://doi.org/ 10.1016/j.jgeb.2017.06.005 DOI: https://doi.org/10.1016/j.jgeb.2017.06.005

Quach V. T. C., Nguyen L. M. K., Nguyen P. T., Truong Q. T., Tran T., 2024. Characterization of endophytic bacteria isolated from wild rice plants in the Mekong Delta, Vietnam. Biodiversitas Journal of Biological Diversity., 25(6): 2576–2585. https://doi.org/10.13057/biodiv/d250628 DOI: https://doi.org/10.13057/biodiv/d250628

Rosenblueth M. and Martínez-Romero E., 2007. Bacterial endophytes and their interactions with hosts. MPMI, 19: 827-837. https://doi.org/10.1094/MPMI-19-0827 DOI: https://doi.org/10.1094/MPMI-19-0827

Sen S. and Chandrasekhar N., 2014. Effect of PGPR on growth promotion of rice (Oryza sativa L .) under salt stress. Asian J. Plant Sci. Res., 4: 62–67. https://doi.org/ 10.1016/j.chemosphere.2019.125136

Shahzad R., Waqas M., Khan A. L., Al-Hosni K., Kang S.-M., Seo C.-W., et al., 2017. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds. Acta Biol Hung., 68: 175–186. https://doi.org/10.1556/018.68. 2017.2.5 DOI: https://doi.org/10.1556/018.68.2017.2.5

Shyam K. L., Joubert P. M. and Doty S. L., 2017. Bacterial endophyte colonization and distribution within plants. Microorganisms, 5: 77. https://doi.org/ 10.3390/microorganisms5040077 DOI: https://doi.org/10.3390/microorganisms5040077

Slama H., Triki M., Bouket A., Mefteh F., Alenezi F., Luptakova L., Cherif-Silini H., Vallat A., Oszako T., Gharsallah N., Belbahri L., 2019. Screening of the high-rhizosphere competent Limoniastrum monopetalum’ culturable endophyte microbiota allows the recovery of multifaceted and versatile biocontrol agents. Microorganisms, 7: 249. https://doi.org/10.3390/microorganisms7080249 DOI: https://doi.org/10.3390/microorganisms7080249

Nguyen V. P., Le T. V. A., To H. T. M., Nguyen T. K. O. and Mai N. T. P., 2023. Systemic adaptation of rice plants under low phosphate conditions and interaction with endophytic bacteria. Ital. J. Agron: 18. https://doi.org/10.4081/IJA.2023.2181 DOI: https://doi.org/10.4081/ija.2023.2181

White J., Kingsley K., Zhang Q., Verma R., Obi N., Dvinskikh S., Elmore M. T., Verma S. K., Gond S. K., Kowalski K. P., 2019. Review: Endophytic microbes and their potential applications in crop management. Pest. Manag. Sci., 75: 2558–2565. https://doi.org/10.1002/ps.5527 DOI: https://doi.org/10.1002/ps.5527

Downloads

Published

27-12-2024

How to Cite

Mai, T. P. N., & Nguyen, P. V. (2024). Characterization of endophytic bacteria in Vietnamese rice seeds. Academia Journal of Biology, 46(4), 1–10. https://doi.org/10.15625/2615-9023/20866

Issue

Section

Articles