Analysis of genetic diversity of Ven dog breed based on microsatellite markers

Nguyen Thi Dieu Thuy, Le Cong Trieu, Huynh Thi Phuong Loan, Bui Thi Tra Mi, Nguyen Huy Tuong, Do Vo Anh Khoa
Author affiliations

Authors

  • Nguyen Thi Dieu Thuy Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Le Cong Trieu Soc Trang Vocational College, 176 Nam Ky Khoi Nghia, Soc Trang, Vietnam
  • Huynh Thi Phuong Loan Can Tho University, Can Tho, Vietnam
  • Bui Thi Tra Mi Nong Lam University, Thu Duc, Ho Chi Minh City, Vietnam
  • Nguyen Huy Tuong Vinh Long College, Vinh Long, Vietnam
  • Do Vo Anh Khoa Vietnam National University of Forestry, Ha Noi, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/20446

Keywords:

Ven indigenous dogs, microsatellite marker, genetic diversity, inbreeding.

Abstract

Microsatellite (MS) is a genetic marker widely used in the studies of pedigree, individual identification, gene mapping, and genetic diversity within and between populations. The genetic diversity of the indigenous Ven dog breed, along with two imported dog breeds, the Berger and Poodle dogs raised in Vietnam, was analyzed based on seven microsatellite markers. A total of 32 alleles, an average number of alleles/loci of 4.6 were observed across 80 samples of the three dog breeds. The overall polymorphic information content (PIC) was 0.67 representing the quality of selected MS markers. Genetic diversity indices (Ho, He, Fit, Fst) showed the phenomenon of inbreeding between individuals in the Ven dog population. The genetic similarity level and phylogenetic tree also reasonably reflect the genetic relationship between the three analyzed dog breeds, in which the Ven dog showed a higher genetic distance compared to two imported dog breeds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Arata S., Asahi A., Takeuchi Y., Mori Y., 2016. Microsatellite loci analysis for individual identification in Shiba Inu. The Journal of Veterinary Medical Science, 78(3): 439−441.

Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., and Struhl K., 1995. Short protocols in molecular biology. New York, 275: 28764−28773.

Bigi D., Marelli S. P., Randi E., Polli M., 2015. Genetic characterization of four native Italian shepherd dog breeds and analysis of their relationship to cosmopolitan dog breeds using microsatellite markers. Animal, 9(12): 1921−1928.

Botstein D., White R. L., Skolnick M., Davis R. W., 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32(3): 314−331. PMID: 6247908; PMCID: PMC1686077.

Buchanan F. C., Adams L. J., Littlejohn R. P., Maddox J. F., Crawford A. M, 1994. Determination of evolutionary relationships among sheep breeds using microsatellites. Genomics, 22(2): 397−403.

Cho G. J., 2005. Microsatellite polymorphism and genetic relationship in dog breeds in Korea. Asian-Australasian Journal of Animal Sciences, 18(8): 1071−1074.

Ciampolini R., Cecchi F., Bramante A., Casetti F., Presciuttini S., 2011. Genetic variability of the Bracco Italiano dog breed based on microsatellite polymorphism. Italian Journal of Animal Science, 10(4).

DeNise S., Johnston E., Halverson J., Marshall K., Rosenfeld D., McKenna S., Sharp T., Edwards J., 2004. Power of exclusion for parentage verification and probability of match for identity in American Kennel Club breeds using 17 canine microsatellite markers. Animal Genetics, 35(1):14−7.

Gentilini F., Turba M., Andreani G., 2004. DNA fingerprinting using microsatellites to solve a parentage testing in the boxer breed. Veterinary Research Communications, 28(1): 185–188.

Goleman M., Balicki I., Radko A., Jakubczak A., Fornal A. 2019. Genetic diversity of the Polish hunting dog population based on pedigree analyses and molecular studies. Livestock Science, 229: 114−117.

Goudet J., 2002. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9. 3.2). http://www.unil.ch/izea/softwares/fstat.html

Halverson J. L., and Edwards J. W., 2000. Microsatellite polymorphism in dog breeds-the AKC parent club study. In: Proc. The 27th Conference of the International Society of Animal Genetics, pp. 19.

Halverson J., Dvorak J., and Stevenson T., 1995. Microsatellite sequences for canine genotyping. US Patent: 05874217.

Irion D. N., Schaffer A. L., Famula T. R., Eggleston M. L., Hughes S. S., Pedersen N. C., 2003. Analysis of genetic variation in 28 dog breed populations with 100 microsatellite markers. Journal of Heredity, 94(1): 81−87.

ISAG Panel DOG, 2005. Available online: www.isag.us/Docs/2005ISAGPanelDOG.pdf (accessed on 1 July 2005).

Kang B. T., Kim K. S., Min M. S., Chae Y. J., Kang J. W., Yoon J., Choi J., Seong J. K., Park H. C., An J., Lee M. H., Park H. M., Lee H., 2009. Microsatellite loci analysis for the genetic variability and the parentage test of five dog breeds in South Korea. Genes and Genetic Systems, 84(3): 245−251.

Khoa D. V. A., and Nghi C. H., 2018. A final report: Preserving genetic resources of Ven dogs and Nhan Chan Xanh chickens of Ca Mau province. Research project of Ca Mau province (in Vietnamese).

Khoa D. V. A., Trieu L. C., Mi B. T. T., Giang N. T., Loan H. T. P., Binh L. T., Nam T. V. B., Hue P. T., Huy N. D., Phuong L. N. N., 2024. Polymorphisms of the 5-Hydroxytryptamine Receptor 1D gene in Ven dogs. Journal of Animal Husbandry Science and Technics, 297: 18−24 (in Vietnamese).

Koskinen M. T., and Bredbacka P., 2000. Assessment of the population structure of five Finnish dog breeds with microsatellites. Animal Genetics, 31(5): 310−317.

Lai F. Y., Lin Y. C., Ding S. T., Chang C. S., Chao W. L., Wang P. H., 2022. Development of novel microsatellite markers to analyze the genetic structure of dog populations in Taiwan. Animal Bioscience, 35(9): 1314−1326.

Lampi S., Donner J., Anderson H., Pohjoismäki J., 2020. Variation in breeding practices and geographic isolation drive subpopulation differentiation, contributing to the loss of genetic diversity within dog breed lineages. Canine Medicine and Genetics, 7(5).

Mellanby R. J., Ogden R., Clements D. N., French A. T., Gow A. G., Powell R., Corcoran B., Schoeman J. P., Summers K. M., 2013. Population structure and genetic heterogeneity in popular dog breeds in the UK. The Veterinary Journal, 196(1): 92−97.

Mellersh C. S., Hitte C., Richman M., Vignaux F., Priat C., Jouquand S., Werner P., André C., DeRose S., Patterson D. F., Ostrander E. A., Galibert F., 2000. An integrated linkage-radiation hybrid map of the canine genome. Mammalian Genome, 11(2): 120−130.

Nei M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583−590.

Oishi N., Maeda M., Makimura K., Sawaguchi T., Hayashiya M., Kubo T., Kano R., Hasegawa A., Kasahara M., 2005. Microsatellite polymorphism in Japanese mongrel dogs. Journal of Veterinary Medical Science, 67(10): 1055−1057.

Phavaphutanon J., and Laopiem S., 2011. Evaluation of microsatellite polymorphism and genetic variability in Thai ridgeback and Bangkaew dogs. The Thai Journal of Veterinary Medicine, 41(3): 273−282.

Radko A., Rubiś D., and Szumiec A., 2018. Analysis of microsatellite DNA polymorphism in the Tatra Shepherd Dog. Journal of Applied Animal Research, 46(1): 254−256.

Raymond M., and Rousset F., 1995. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3): 248−249.

Tautz D., and Renz, M., 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Research, 12: 4127−4138.

Trieu L. C., Binh L. T., Giang N. T., Mi B. T. T., Loan H. T. P., Linh N. T. N, Hue P. T., Phuong L. N. N, and Khoa D. V. A., 2024. Some biological behavior, growth and reproduction traits in Ven dogs. Journal of Animal Husbandry Science and Technics, 297: 68−73 (in Vietnamese).

Trieu L. C., Giang N. T., Binh L. T., Phuoc N. N. T., Khoa D. V. A., 2019. Some basic blood indicators in Ven dogs. Journal of Animal Husbandry Science and Technics, 4: 15−20 (in Vietnamese).

Trieu L. C., Giang N. T., Binh L. T., Phuoc N. N. T., Khoa D. V. A., 2020. Some morphological traits of Ven dogs. Journal of Animal Husbandry Science and Technics, 256: 19−25 (in Vietnamese).

Trieu L. C., Nghi C. H., Khoa D. V. A., 2018. Some characteristics of Ven dogs in Ca Mau. Journal of Animal Husbandry Science and Technics, 232: 35−39 (in Vietnamese).

Weir B. S., and Cockerham C. C., 1984. Estimating F-Statistics for the analysis of population structure. Evolution, 38(6): 1358−1370.

Wright S., 1965. The interpretation of population structure by f-statistics with special regard to systems of mating. Evolution, 19(3): 395−420.

Zhou H., and Lamont S. J., 1999. Genetic characterization of biodiversity in highly inbred chicken lines by microsatellite markers. Animal Genetics, 30: 256−264.

Downloads

Published

23-06-2024

How to Cite

Nguyen Thi, D. T., Le, C. T., Huynh Thi , P. L., Bui Thi, T. M., Nguyen, H. T., & Do Vo, A. K. (2024). Analysis of genetic diversity of Ven dog breed based on microsatellite markers. Academia Journal of Biology, 46(2), 93–100. https://doi.org/10.15625/2615-9023/20446

Issue

Section

Articles