Molecular phylogeny of Convallarioideae (Asparagaceae), with emphasis on Vietnamese species

Thi Mai Linh Le, Ngoc Sam Ly, Van The Pham, Phuong Hanh Nguyen, Duc Binh Tran, Li-Na Dong, Leonid V. Averyanov, Noriyuki Tanaka, Khang Sinh Nguyen
Author affiliations

Authors

  • Thi Mai Linh Le Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Ngoc Sam Ly Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Van The Pham Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Vietnam
  • Phuong Hanh Nguyen Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Duc Binh Tran Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam
  • Li-Na Dong Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
  • Leonid V. Averyanov Komarov Botanical Institute of the Russian Academy of Sciences, 197376 St. Petersburg, Russia
  • Noriyuki Tanaka
  • Khang Sinh Nguyen Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Ha Noi, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/18765

Keywords:

Convallarieae, Liriopeae, Nolinoideae, Ophiopogoneae, phylogeny, Theropogon.

Abstract

With the aim of inferring phylogenetic relationships among 86 species (including 45 species from Vietnam) mostly of the subfamily Convallarioideae (=Nolinoideae) (Asparagaceae sensu APG IV), we analyzed their chloroplast DNA sequences (rbcL and trnL-F) by both Bayesian inference (BI) and maximum likelihood (ML) methods. Our dataset included six of the seven tribes classified in this subfamily; Convallarieae, Dracaeneae, Liriopeae Nolineae, Polygonateae and Rusceae (Eriospermeae not examined). Our study supported the sisterhood between Convallarioideae and Asparagoideae and the monophyly of all the tribes except Polygonateae. Within the Convallarioideae we examined, Dracaena formed the basalmost clade. Theropogon did not positively nest in any of the tribes including Convallarieae in which it had often been classified. It was weakly defined as the second basalmost branch. Ruscus (Rusceae) nested in Polygonateae as the sister to Maianthemum, hence Polygonateae was recognized here as paraphyletic. Nolineae was discordant in position between BI and ML analyses, probably reflecting the limited molecular markers we examined. In both BI and ML analyses, all genera of Liriopeae and Convallarieae were monophyletic and their intergeneric relationships were consistent. In Liriopeae, Liriope was sister to the clade of Ophiopogon + Peliosanthes. In Convallarieae, Aspidistra + Tupistra formed the sister clade to Reineckea + Rohdea. Interspecific relationships within these genera were, however, not clearly resolved, except for several pairs of sister species. We also briefly discussed some of the resultant phylogenetic relationships from the morphological and/or evolutionary aspects.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

APG (Angiosperm Phylogeny Group) IV, 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1–20.

Averyanov L. V., Tanaka N., 2012. New species of Peliosanthes and Tupistra (Asparagaceae) from eastern Indochina. Taiwania, 57(2): 153–167.

Averyanov L. V., Tillich H. J., 2014. Aspidistra albopurpurea, A. khangii, A. lubae and A. stellata spp. nov. (Asparagaceae, Convallariaceae s.s.) from Indochina. Nordic Journal of Botany, 32: 752–760.

Averyanov L. V., Tillich H. J., 2015. Aspidistra laotica, A. multiflora, A. oviflora and A. semiaperta spp. nov. (Asparagaceae, Convallariaceae s.s.) from eastern Indochina. Nordic Journal of Botany, 33: 366–376.

Averyanov L. V., Tanaka N., Nguyen K. S., T. H. Nguyen, 2016. New species of Ophiopogon and Peliosanthes (Asparagaceae) from Laos and Vietnam. Taiwania, 61(3): 201–217.

Averyanov L. V., Tanaka N., Nguyen K. S., Q. N. Nguyen, T. V. Maisak, T. H. Nguyen, 2017 a. New species of Peliosanthes, Rohdea and Tupistra (Asparagaceae) from Laos and Vietnam. Nordic Journal of Botany, 35: 697–710.

Averyanov L. V., Tillich H. -J., Le T. A., Pham V. T., Maisak T. V., Vu T. C., 2017 b. Aspidistra letreae (Asparagaceae), a new species from central Vietnam. Phytotaxa, 308(1): 137–140.

Averyanov L. V., Tanaka N., Son H. T., Nguyen K. S., Maisak T. V., Nguyen T. H., Peng C. I., 2018. Tupistra cardinalis (Asparagaceae), a new species from limestone areas in northern Vietnam. Phytotaxa, 334(1): 060–064.

Averyanov L. V., Le T. A., Nguyen K. S., Tillich H. J., Nguyen D. D., Hoang L. T. A., Tran H. D., Dat P. T. T., Maisak T. V., 2019 a. Aspidistra erosa, A. sarcantha, and A. verruculosa (Asparagaceae), three new species from Vietnam. Phytotaxa, 404(3): 102–110.

Averyanov L. V., Tanaka N., Nguyen K. S., Maisak T. V., 2019 b. A new species and a new combination in Tupistra (Asparagaceae). Taiwania, 64(3): 280–284.

Averyanov L. V., Nguyen K. S., Nuraliev M. S., Vislobokov N. A., Tanaka N., Yury O. K. G., Lyskov D. F., Maisak T. V., Hieu N. Q., Kuznetsov A. N., Kuznetsova S. P., Thai T. H., 2020. Tupistra nganii (Asparagaceae), a new species with greenish yellow flowers from northern Vietnam and southwestern China. Phytotaxa, 449(2): 173–180.

Averyanov L. V., Tanaka N., Nguyen K. S., Maisak T. V., Nuraliev M. S., Vislobokov N. A., Romanov M. S., Son H. T., 2021. New and noteworthy species of Ophiopogon and Peliosanthes (Asparagaceae) from Laos, Vietnam and Thailand. Nordic Joural of Botany, 2021: e03130. https://doi.org/10.1111/njb.03130 https://doi.org/10.1111/njb.03130">

Borah D., Taram M., Tangjang S., Upadhyaya A., Tanaka N., 2020. Peliosanthes macrophylla var. assamensis (Asparagaceae), a new variety from Behali Reserve Forest in Assam, Northeast India. Blumea, 65: 121–125.

Bui Q. M., Schmidt H. A., Chernomor O., Schrempf D., Woodhams M. D., Haeseler A. V., Lanfear R., 2020. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Molecular Biology and Evolution, 37(5): 1530–1534.

Chase M. W., Reveal J. L., Fay M. F., 2009. A subfamilial classification for the expanded asparagalean families Amaryllidaceae, Asparagaceae and Xanthorrhoeaceae. Botanical Journal of the Linnean Society, 161: 132–136.

Chen X. Q., Liang S. Y., Xu J. M., Boufford D. E., Gilbert M. G., Kamelin R. V., Kawano S., Koyama T., Mordak E. V., Noguchi J., Soukup V. G., Takahashi H., Tamanian K. G., Tamura M. N., Turland N. J., 2000. Liliaceae. In: Wu Z. Y., Raven P. H. (eds.) Flora of China 24. Science Press, Beijing & Missouri Botanical Garden Press, St. Louis, pp. 73–263.

Conran J. G., 1989. Cladistic analyses of some net-veined Liliitlorae. Plant Systematics and Evolution, 168: 123–141.

Conran J. G., Tamura M. N., 1998. Convallariaceae. In: Kubitzki K. (ed.) The Families and Genera of Vascular Plants III. Flowering Plants, Monocotyledons, Lilianae (except Orchidaceae). Springer-Verlag, Berlin, Heidelberg, pp. 186–198.

Crawley S. S., Hilu K. W., 2012. Impact of missing data, gene choice, and taxon sampling on phylogenetic reconstruction: the Caryophyllales (angiosperms). Plant Systematics and Evolution, 298: 297–312.

Cronquist A., 1981. An integrated system of classification of flowering plants. Columbia University Press, New York, USA, 1262 p.

Dahlgren F., Bremmer K., 1985. Major clades of Angiosperms. Cladistics, 1(4): 349–368.

Ding H. B., Yang B., Zhou S. S., Maw M. B., Maung K. W., Tan Y. H., 2019. New contributions to the flora of Myanmar I. Plant diversity, 41(3): 135–152.

Doyle J. J., Doyle J. L., 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bulletin, 19: 11–15.

Engler A., 1887. Liliaceae. In: Engler A, Prantl K (eds.), die Natürlichen Pflanzenfamilien, II(5). Verlag von Wilhelm Engelmann, Leipzig, pp. 10–91.

Fischer E., 2015. Magnoliopsida (Angiosperms) p.p.: Subclass Magnoliidae [Amborellanae to Magnolianae, Lilianae p.p. (Acorales to Asparagales)]. In: Frey W. (ed.). Syllabus of plant families. Adolf Engler’s Syllabus der Pflanzenfamilien, 13th ed., part 4. Borntraeger Science Publishers, Stuttgart, pp. 111–466.

Floden A. J., 2017. Molecular phylogenetic studies of the genera of tribe Polygonateae (Asparagaceae: Nolinoideae): Disporopsis, Heteropolygonatum, and Polygonatum. PhD dissertation, University of Tennessee, Knoxville, Tennessee, USA, pp. 102.

Floden A., Schilling E. E., 2018. Using phylogenomics to reconstruct phylogenetic relationships within tribe Polygonateae (Asparagaceae), with a special focus on Polygonatum. Molecular Phylogenetics and Evolution, 129: 202–213.

Heath T. A., Hedtke S. M., Hillis D. M., 2008. Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution, 46(3): 239–257.

Hoang D. T., Chernomor O., Haeseler A. V., Minh B. Q., Vinh L. S., 2018. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Molecular Biology and Evolution, 35(2): 518–522.

Hooker J. D., 1892. Flora of British India, 6. L. Reeve & Co., London, 792 pp.

Jang C. G., Pfosser M, 2002. Phylogenetics of Ruscaceae sensu lato based on plastid rbcL and trnL-F DNA sequences. Stapfia, 80: 333–348.

Ji Y. H., Landis J. B., Yang J., Wang S. Y., Zhou N., Lou Y., Liu H. Y., 2023. Phylogeny and evolution of Asparagaceae subfamily Nolinoideae: new insights from plastid phylogenomics. Annals of Botany, 131: 301–312.

Kalyaanamoorthy S., Bui Q. M., Wong T. K. F., Haeseler A. V., Jermiin L. S., 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods, 14(6): 587–589.

Katoh K., Standley D. M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution, 30: 772–780.

Kim J. H., Kim D. K., Forest F., Fay M. F., Chase M. W., 2010. Molecular phylogenetics of Ruscaceae sensu lato and related families (Asparagales) based on plastid and nuclear DNA sequences. Annals of Botany, 106: 775–790.

Kim D. K., Kim J. S., Kim J. H., 2012. The Phylogenetic relationships of Asparagales in Korea based on five plastid DNA regions. Journal of Plant Biology, 55: 325–341.

Kim C. K., Cameron K. M., Kim J. H., 2017. Molecular systematics and historical biogeography of Maianthemum s.s. American Journal of Botany, 104(6): 939–952.

Krause K., 1930. Liliaceae. In: Engler A., Prantl K. (eds.) Die Natürlichen Pflanzanfamiuen 15a. Engelmann, Leipzig, Germany, pp. 227–386.

Li G. Z. (chief ed.), Lang K. Y., Wang R. X., Wei Y. G., Zhao D. Y., Tang S. Q., Li S., Li F. Y., Wang Y. G., Qi X. X., Tang W. X., Tang S. C., Qi S. H., Su H. L., 2004. The genus Aspidistra. Guangxi Science & Technology Publishing House, Nanning, Guangxi, China, pp. 229 (in Chinese).

Lincoln R,, Boxshall G. & Clark P., 1998. A Dictionary of Ecology, Evolution and Systematics, 2nd ed. Cambridge University Press, Cambridge, UK, pp. 361.

Ly N. S., Hoang T. S., Nguyen K. S., Tanaka N., 2022. Tupistra annamensis (Asparagaceae), a new species from central Vietnam. Phytotaxa, 567(2): 173–180.

Meng R., Luo L. Y., Zhang J. Y., Zhang D. G., Nie Z. L., Meng Y., 2021 a. The deep evolutionary relationships of the morphologically heterogeneous Nolinoideae (Asparagaceae) revealed by transcriptome data. Frontiers in Plant Science, 11: 584981. http://dx.doi.org/10.3389/fpls.2020.584981. http://dx.doi.org/10.3389/fpls.2020.584981.">

Meng R., Meng Y., Yang Y. P., Nie Z. L., 2021 b. Phylogeny and biogeography of Maianthemum (Asparagaceae: Nolinoideae) revisited with emphasis on its divergence pattern in SW China. Plant Diversity, 43: 93–101.

Nabhan A. R., Sarkar I. N., 2011. The impact of taxon sampling on phylogenetic inference: a review of two decades of controversy. Briefings in Bioinformatics, 13(1): 122–134.

Nguyen K. S., Averyanov L. V., Tanaka N., Konstantinov E. L., Maisak T. V., Nguyen H. T., 2017. New taxa of Peliosanthes and Tupistra (Asparagaceae) in the flora of Laos and Vietnam and supplemental data for T. patula. Phytotaxa, 312 (2): 199–212.

Nguyen K. S., Averyanov L. V., Tanaka N., Quang B. H., Hai D. V., Binh T. D., Qao Q., 2020. Peliosanthes crassicoronata (Asparagaceae), a new species from southern Vietnam. Phytotaxa, 429(1): 39–47.

Nguyen K. S., Tanaka N., Averyanov L. V., Nguyen P. H., Tran D. B., 2021. Rohdea dangii (Asparagaceae), a new species from northwestern Vietnam. Phytotaxa, 482(1): 65–72.

Nguyen T. D., 2007. Flora of Vietnam, Liliales Perleb, Vol. 8. Science and Technics Publishing House, Hanoi, 510 p (in Vietnamese).

Planet P. J., 2006. Tree disagreement: Measuring and testing incongruence in phylogenies. Journal of Biomedical Informatics, 39: 86–102.

Rambaut A., 2018. FigTree v.1.4.4. http://tree.bio.ed.ac.uk/software/figtree/ accessed: 25/7/2023. http://tree.bio.ed.ac.uk/software/figtree/ accessed: 25/7/2023.">

Rambaut A, Drummond A. J., Xie D., Baele G., Suchard M. A., 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Systematic Biology 67(5): 901–904.

Reveal J. L., 2012. An outline of a classification scheme for extant flowering plants. Phytoneuron, 2012-37: 1–221.

Reveal J. L., Chase M. W., 2011. APG III: Bibliographical information and synonymy of Magnoliidae. Phytotaxa, 19: 71–134.

Ronquist F., Teslenko M., Mark P. V. D., Ayres D. L., Darling A., Höhna S., Larget B., Liu L., Suchard M. A., Huelsenbeck J. P., 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3): 539–542.

Rudall P. J., Conran J. G., Chase M. W., 2000. Systematics of Ruscaceae/Convallariaceae: a combined morphological and molecular investigation. Botanical Journal of the Linnean Society, 134: 73–92.

Russo C. A. M., Aguiar B., Selvatti A. P., 2017. Selecting molecular markers for a specific phylogenetic problem. MOJ Proteomics & Bioinformatics, 6(3): 295–301.

Seberg O., Petersen G., Davis J. I., Pires J. C., Stevenson D. W., Chase M. W., Fay M. F., Devey D. S., Jorgensen T., Sytsma K. J., Pillon Y., 2012. Phylogeny of the Asparagales based on three plastid and two mitochondrial genes. American Journal of Botany, 9: 875–889.

Stevens P. F., 2001 onwards. Angiosperm phylogeny website. Version 14. http://www.mobot.org/MOBOT/research/APweb/, accessed: 25/7/2023. http://www.mobot.org/MOBOT/research/APweb/, accessed: 25/7/2023.">

Taberlet P., Gielly L., Pautou G., Bouvet J., 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Molecular Biology, 17(5): 1105–1109.

Takhtajan A., 2009. Flowering Plants. Springer, Dordrecht, Netherlands, 871 pp.

Tamura M. N., Xu J. M., 2007. A new species of Ophiopogon (Asparagaceae) from Guangxi, China. Acta Phytotaxonomica et Geobotanica, 58(1): 39–41.

Tanaka N., 1998. Taxonomic notes on Ophiopogon of South Asia I. The Journal of Japanese Botany, 73: 301–313.

Tanaka N., 2000. Taxonomic notes on Ophiopogon of South Asia V. The Journal of Japanese Botany, 75: 69–79.

Tanaka N., 2003 a. New combinations in Rohdea (Convallariaceae). Novon, 13(3): 329–333.

Tanaka N., 2003 b. Inclusion of Tricalistra and Gonioscypha muricata in Tupistra (Convallariaceae). Novon, 13(3): 334–336.

Tanaka N., 2010 a. A taxonomic revision of the genus Rohdea (Asparagaceae). Makinoa, New Series, 9: 1–54.

Tanaka N., 2010 b. A taxonomic revision of the genus Tupistra (Asparagaceae). Makinoa, New Series, 9: 55–93.

Tanaka N., 2018. Taxonomic revision of Peliosanthes bakeri and P. violacea (Asparagaceae), with description of two new species from Bangladesh and India. Phytotaxa, 356(1): 34–48.

Tanaka N., Nguyen K. S., 2023. Nolinoideae (Asparagaceae) in APG III needs replacing with Convallarioideae. Phytotaxa, 583(3): 297–299.

Tillich H.-J., 2023. 200 years Aspidistra (Asparagaceae), and now more than 200 species: a new comprehensive determination key, and an annotated bibliography of the genus. Nordic Journal of Botany, 2023(3): e03818. https://doi.org/10.1111/njb.03818 https://doi.org/10.1111/njb.03818">

Urantowka A. D., Kroczak A., Mackiewicz P., 2017. The influence of molecular markers and methods on inferring the phylogenetic relationships between the representatives of the (parrots, Psittaciformes), determined on the basis of their complete mitochondrial genomes. BMC Evolutionary Biology, 17: 166. https://doi.org/10.1186/s12862-017-1012-1 https://doi.org/10.1186/s12862-017-1012-1">

Wang F. T., Tang T. (eds.), 1978. Flora Reipublicae Popularis Sinicae 15. Science Press, Beijing, China, 280 pp (in Chinese with Latin addenda).

Wang G. Y., Meng Y., Huang J. L., Yang Y. P., 2014. Molecular phylogeny of Ophiopogon (Asparagaceae) inferred from nuclear and plastid DNA sequences. Systematic Botany, 39: 776–784.

Wang J. J., Yang Y. P., Sun H., Wen J., Deng T., Nie Z. L., Meng Y., 2016. The biogeographic south-north divide of Polygonatum (Asparagaceae tribe Polygonateae) within eastern Asia and its recent dispersals in the Northern Hemisphere. PLoS One 11:e0166134. https://doi.org/10.1371/journal.pone.0166134 https://doi.org/10.1371/journal.pone.0166134">

Wang J., Qian J., Jiang Y., Chen X. C., Zheng B. J., Chen S. L., Yang F. J., Xu Z. C., Duan B. Z., 2022. Comparative analysis of chloroplast genome and new insights into phylogenetic relationships of Polygonatum and tribe Polygonateae. Frontiers in Plant Science, 13: 882189. http://dx.doi.org/10.3389/fpls.2022.882189 http://dx.doi.org/10.3389/fpls.2022.882189">

Wiens J. J., Tiu J., 2012. Highly incomplete taxa can rescue phylogenetic analyses from the negative impacts of limited taxon sampling. PLoS ONE, 7(8): e42925. https://doi.org/10.1371/journal.pone.0042925 https://doi.org/10.1371/journal.pone.0042925">

Zhang D., Gao F. L., Jakovlié I., Zou H., Zhang J., Li W. X., Wang G. T., 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources, 20(1): 348–355.

Zurawski G., Perrot B., Bottomley W., Whitfeld P. R., 1981. The structure of the gene for the large subunit of ribulose 1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucleic Acids Research, 9(14): 3251–3270.

Zwickl D. J., Hillis D. M., 2002. Increased taxon sampling greatly reduces phylogenetic errors. Systematic Biology, 51(4): 588–598.

Downloads

Published

28-12-2023 — Updated on 05-01-2024

How to Cite

Le, T. M. L., Ly, N. S., Pham, V. T., Nguyen, P. H., Tran, D. B., Dong, L., Averyanov, L. V., Tanaka, N., & Nguyen, S. K. (2024). Molecular phylogeny of Convallarioideae (Asparagaceae), with emphasis on Vietnamese species. Academia Journal of Biology, 45(4), 93–109. https://doi.org/10.15625/2615-9023/18765

Issue

Section

Articles