Greenhouse gases concentrations influence on vertical distribution of nematode communities in the Ba Lai river, Vietnam

Tran Thai Thanh, Nguyen Thi My Yen, Pham Ngoc Hoai, Nguyen Lu Nguyet Hang, Nguyen Van Dong, Ngo Xuan Quang
Author affiliations


  • Tran Thai Thanh Graduate University of Science and Technology, VAST, Vietnam
  • Nguyen Thi My Yen Institute of Tropical Biology, VAST, Vietnam
  • Pham Ngoc Hoai Graduate University of Science and Technology, VAST, Vietnam
  • Nguyen Lu Nguyet Hang Ho Chi Minh City University of Technology, Vietnam National University, Vietnam
  • Nguyen Van Dong Ho Chi Minh City University of Technology, Vietnam National University, Vietnam
  • Ngo Xuan Quang Institute of Tropical Biology, Vietnam Academy of Science and Technology



Dam effects, ndicator, Mekong, methane, monitoring, sulfur


Vertical distribution of free–living nematodes from the tropical region are still poorly documented, especially in Vietnam. Field sampling was conducted at the Ba Lai river, a tributary of the Mekong river, to insight into the regularity of the vertical pattern of nematode assemblages. Furthermore, some sediment environmental characteristics such as greenhouse gases were also detected in order to understand how to influence nematode distribution. The study found that nematode composition differed significantly between the upper and deeper layers of sediment but not among the deeper layers. Nematode density showed spatial variability across layers, with higher values in the upper layer. Nematode diversity decreased with increasing depth. Non–selective deposit feeders (1B) were dominated in the surface layers, while the predator–omnivores feeders (2B) was numerous in the deeper layers. In the dry season, both methane and hydrogen sulfur were found negatively affecting nematode diversity in sediment profile, particularly, methane effects negatively also to species richness, densities, and evenness. However, only methane has a significant correlation to the diversity, species richness, densities, and evenness of the nematode communities.


Download data is not yet available.


Apitz S. E., 2012. Conceptualizing the role of sediment in sustaining ecosystem services: Sediment-ecosystem regional assessment (SEcoRA). Science of the Total Environment, 415: 9–30.

Archer D., Buffett B., Brovkin V., 2009. Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proceedings of the National Academy of Sciences, 106(49): 20596–20601.

Battin T. J., Luyssaert S., Kaplan L. A., Aufdenkampe A. K., Richter A., Tranvik L. J., 2009. The boundless carbon cycle. Nature Geoscience, 2(9): 598–600.

Beaulieu J. J., McManus M. G., Nietch C. T., 2016. Estimates of reservoir methane emissions based on a spatially balanced probabilistic‐survey. Limnology and Oceanography, 61(S1): 27–40.

Berberich M. E., Beaulieu J. J., Hamilton T. L., Waldo S., Buffam I., 2020. Spatial variability of sediment methane production and methanogen communities within a eutrophic reservoir: Importance of organic matter source and quantity. Limnology and Oceanography, 65(6): 1336–1358.

Bezerra T. N., Eisendle U., Hodda M., Holovachov O., Leduc D., Mokievsky V., Peña Santiago R., Sharma J., Smol N., Tchesunov A., Venekey V., Zhao Z., Vanreusel A., 2022. Nemys: World Database of Nematodes. Accessed at [accessed: 21/03/2022]. [accessed: 21/03/2022].">

Bongers T., Ferris H., 1999. Nematode community structure as a bioindicator in environmental monitoring. Trends in Ecology & Evolution, 14(6): 224–228.

Bongers T., Van de Haar J., 1990. On the potential of basing an ecological typology of aquatic sediments on the nematode fauna: an example from the river Rhine. Aquatic Ecology, 24: 37–45.

Brown A. C., McLachlan A., 1990. Ecology of sandy shores. Elsevier, Amsterdam.

Brown K. A., McGreer E. R., Taekema B., Cullen J. T., 2011. Determination of total free sulphides in sediment porewater and artefacts related to the mobility of mineral sulphides. Aquatic Geochemistry, 17(6): 821–839.

Brustolin M. C., Thomas M. C., Lana P. C., 2013. A functional and morphological approach to evaluate the vertical migration of estuarine intertidal nematodes during a tidal cycle. Helgoland Marine Research, 67(1): 83–96.

Byers S. C., Mills E. L., Stewart P. L., 1978. A comparison of methods of determining organic carbon in marine sediments, with suggestions for a standard method. Hydrobiologia, 58(1): 43–47.

Cardoso S. J., Quadra G. R., Resende N. D. S., Roland F., 2019. The role of sediments in the carbon and pollutant cycles in aquatic ecosystems. Acta Limnologica Brasiliensia, 31(1).

Dando P. R., Fenchel T., Jensen P., O’Hara S. C. M., Niven S. J., Schuster U., 1993. Ecology of gassy, organic-rich sediment in a shallow subtidal area on the Kattegat coast of Denmark. Marine Ecology Progress Series, 100: 265–271.

Defeo O., McLachlan A., 2005. Patterns, processes and regulatory mechanisms in sandy beach macrofauna: a multi-scale analysis. Marine Ecology Progress Series, 295: 1–20.

Drake T. W., Raymond P. A., Spencer R. G., 2018. Terrestrial carbon inputs to inland waters: A current synthesis of estimates and uncertainty. Limnology and Oceanography Letters, 3(3): 132–142.

Fenchel T., King G., Blackburn T., 2012. Bacterial biogeochemistry: The ecophysiology of mineral cycling. London: Academic Press.

Forsberg C., 1989. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia, 176(1): 263–277.

Frangipane G., Pistolato M., Molinaroli E., Guerzoni S., Tagliapietra D., 2009. Comparison of loss on ignition and thermal analysis stepwise methods for determination of sedimentary organic matter. Aquatic Conservation: Marine and Freshwater Ecosystems, 19(1): 24–33.

Górska B., Grzelak K., Kotwicki L., Hasemann C., Schewe I., Soltwedel T., Włodarska-Kowalczuk M., 2014. Bathymetric variations in vertical distribution patterns of meiofauna in the surface sediments of the deep Arctic ocean (HAUSGARTEN, Fram strait). Deep Sea Research Part I: Oceanographic Research Papers, 91:


Hällqvist E., 2012. Methane emissions from three tropical hydroelectrical reservoirs, Biology Education Centre, Uppsala University.

Hauquier F., Ingels J., Gutt J., Raes M., Vanreusel A., 2011. Characterisation of the nematode community of a low-activity cold seep in the recently ice-shelf free Larsen B area, Eastern Antarctic Peninsula. PLoS One, 6(7): e22240.

Hentschel U., Berger E. C., Bright M., Felbeck H., & Ott, J. A., 1999. Metabolism of nitrogen and sulfur in ectosymbiotic bacteria of marine nematodes (Nematoda, Stilbonematinae). Marine Ecology Progress Series, 183: 149–158.

Heip C., Vincx M., Vranken G., 1985. The ecology of marine nematodes. Oceanography and Marine Biology: An Annual Review, 23: 399–489.

Huttunen J. T., Väisänen T. S., Hellsten S. K., Martikainen P. J., 2006. Methane fluxes at the sediment-water interface in some boreal lakes and reservoirs. Boreal Environment Research, 11(1): 27–34.

Ingels J., Tchesunov A. V., Vanreusel A., 2011. Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin-how local environmental conditions shape nematode structure and function. PloS One, 6(5): e20094.

Ion I. V., Ene, A., 2021. Evaluation of Greenhouse Gas Emissions from Reservoirs: A Review. Sustainability, 13(21): 11621.

Kotwicki L., Troch M. D., Urban-Malinga B., Gheskiere T., Węslawski J. M., 2005. Horizontal and vertical distribution of meiofauna on sandy beaches of the North Sea (The Netherlands, Belgium, France). Helgoland Marine Research, 59(4): 255–264.

Kulshreshtha S., Junkins, B., 2001. Effect of irrigation development on greenhouse gas emissions in Alberta and Saskatchewan. Canadian Water Resources Journal, 26(1): 107–127.

Kvenvolden K. A., 1993. Gas hydrates‒geological perspective and global change. Reviews of Geophysics, 31(2): 173–187.

Leduc D., Rowden A. A., 2018. Nematode communities in sediments of the Kermadec trench, Southwest Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 134: 23–31.

Leloup J., Loy A., Knab N. J., Borowski C., Wagner M., Jørgensen B. B., 2007. Diversity and abundance of sulfate‐reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Environmental Microbiology, 9(1): 131–142.

Levin L. A., 2005. Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. Oceanography and Marine Biology: 11–56.

Long S. M., Ross O. B., 1999. Vertical distribution of nematodes (Nematoda) and harpacticoid copepods (Copepoda: Harpacticoida) in muddy and sandy bottom of intertidal zone at Lok Kawi, Sabah, Malaysia. Raffles Bulletin of Zoology, 47(2): 349–364.

Maria T. F., Vanaverbeke J., Esteves A. M., De Troch M., Vanreusel A., 2012. The importance of biological interactions for the vertical distribution of nematodes in a temperate ultra-dissipative sandy beach. Estuarine, Coastal and Shelf Science,

: 114–126.

Maslin M., Owen M., Betts R., Day S., Dunkley Jones T., Ridgwell A., 2010. Gas hydrates: past and future geohazard?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 368(1919):


Munro A. L. S., Wells J. B. J., McIntyre A. D., 1978. Energy flow in the flora and meiofauna of sandy beaches. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 76(4): 297–315.

Ngo X. Q., Chau N. N., Smol N., Prozorova L., Vanreusel A., 2016.

Intertidal nematode communities in the Mekong estuaries of

Vietnam and their potential for biomonitoring. Environmental Monitoring and Assessment, 188(2): 91.

Ngo X. Q., Ngo T. T., Nguyen X. D., Vanreusel A., 2017. Initial study on impact of Ba Lai dam construction to humanity ecosystem in Binh Dai district, Ben tre province. In: Proceeding of Human ecology and Sustainable development from theory to practice. Ha Noi, pp. 254–274.

Ngo X. Q., Nguyen T. M. Y., Tran T. T., Nguyen T. H. Y., Nguyen V. D., Pham N. H., Lins L., Vanreusel., Veettil B. K., Nguyen D. H., Ho Q. B., Nguyen H. Q., Prozorova L., 2022. Impact of a dam construction on the intertidal environment and free-living nematodes in the Ba Lai, Mekong Estuaries, Vietnam. Environmental Monitoring and Assessment: 194 & 770.

Nguyen T. M. Y, Vanreusel A., Lins L., Thai T. T., Nara Bezerra T., Quang, N. X., 2020. The effect of a dam construction on subtidal nematode communities in the Ba Lai Estuary, Vietnam. Diversity, 12(4): 137.

Nguyen T. M. Y., Vanreusel A., Mevenkamp L., Laforce B., Lins L., Tran T. T., Nguyen V. D., & Ngo X. Q., 2022. The effect of a dam on the copper accumulation in estuarine sediment and associated nematodes in a Mekong estuary. Environmental Monitoring and Assessment, 194(Suppl 2): 772.

Nguyen V. T., 2007. Fauna of Vietnam. Free-living Nematodes Orders Monhysterida, Araeolaimida, Chromadorida, Rhabditida, Enoplida, Mononchida and Dorylaimida. Science Technology. Hanoi, Vietnam (In Vietnamese).

Olu K., Lance S., Sibuet M., Henry P., Fiala-Médioni A., & Dinet A., 1997. Cold seep communities as indicators of fluid expulsion patterns through mud volcanoes seaward of the Barbados accretionary prism. Deep Sea Research Part I: Oceanographic Research Papers, 44(5): 811–841.

Pinto T. K., Austen M. C., Warwick R. M., Somerfield P. J., Esteves A. M., Castro F. J. V., Fonseca–Genevois V. G., Santos P. J. P., 2013. Nematode diversity in different microhabitats in a mangrove region. Marine Ecology, 34 (3): 257–268.

Platt H. M, Warwick R. M, 1983. Free-living Marine Nematodes. Part I: British Enoplids. In: Kermack D. M., Barnes R. S. K. (eds) The Linnean Society of London and the Estuarine & Coastal Sciences Association. London, UK.

Platt H. M, Warwick R. M., 1988. Free-Living Marine Nematodes, Part II: British Chromadorids. In: Kermack D. M., Barnes R. S. K. (eds) The Linnean Society of London and the Estuarine & Coastal Sciences Association. London, UK.

Regnier P., Friedlingstein P., Ciais P., Mackenzie F. T., Gruber N., Janssens I. A., Laruelle G. G., Lauerwald R., Luyssaert S., Andersson A. J., Arndt S., Arnosti C., Borges A. V., Dale A. W., Gallego-Sala A., Goddéris Y., Goossens N., Hartmann J., Heinze C., Ilyina T., Joos F., LaRowe D. E., Leifeld J., Meysman F. J. R., Munhoven G., Raymond P. A., Spahni R., Suntharalingam P., Thullner M., 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nature Geoscience, 6(8): 597–607.

Rowe A. R., Urbanic M., Trutsche, L., Shukle J., Druschel G., Booth M., 2022. Sediment disturbance negatively impacts methanogen abundance but has variable effects on total methane emissions, Frontiers in Microbiology: 479.

Sawakuchi H. O., Neu V., Ward N. D., Barros M. D. L. C., Valerio A. M., Gagne-Maynard W., Cunha A. C., Less D. F., Diniz J. E., Richey J. E.. 2017. Carbon dioxide emissions along the lower Amazon river. Frontiers in Marine Science, 4: 76.

Shimanaga M., Kitazato H., Shirayama Y., 2000. Seasonal patterns of vertical distribution between meiofaunal groups in relation to phytodetritus deposition in the bathyal Sagami Bay, central Japan. Journal of Oceanography, 56(4):


Song C., Gardner K. H., Klein S. J., Souza S. P., Mo W., 2018. Cradle-to-grave greenhouse gas emissions from dams in the United States of America. Renewable and Sustainable Energy Reviews, 90: 945–956.

Steyaert M., Garner N., van Gansbeke D., Vincx M., 1999. Nematode communities from the North Sea: environmental controls on species diversity and vertical distribution within the sediment. Journal of the Marine Biological Association of the United Kingdom, 79(2): 253–264.

Steyaert M., Vanaverbeke J., Vanreusel A., Barranguet C., Lucas C., Vincx M., 2003. The importance of fine-scale, vertical profiles in characterising nematode community structure. Estuarine, Coastal and Shelf Science, 58(2): 353–366.

Teiwes M., Bergtold M., Traunspurger W., 2007. Factors influencing the vertical distribution of nematodes in sediments. Journal of Freshwater Ecology, 22(3): 429–439.

Tuan L. A., Du L. V., Skinner T. (ed), 2012. Rapid Integrated & Ecosystem–Based Assessment of Climate Change Vulnerability & Adaptation for Ben Tre Province, Vietnam. Completed under the ‘Global Cooperation on Water Resource Management’ (WWF and Coca-Cola) and the ‘Capacity building and sustainable production’ programme (WWF - DANIDA) by World Wildlife Fund for Nature (WWF).

Tran T. T., Lam N. L. Q., Yen N. T. M., Quang N. X., Vanreusel A., 2018. Biodiversity and distribution patterns of free-living nematodes communities in Ba Lai river, Ben Tre province. Vietnam Journal of Science and Technology, 56(2): 224–224.

Tran T. T., Nguyen M. Y., Quang N. X., Hoai P. N., Veettil B. K., 2022. Ecological impact assessment of irrigation dam in the

Mekong Delta using intertidal nematode communities as bioindicators. Environmental Science and Pollution Research, 29(60): 90752–90767.

Urban–Malinga B., Drgas A., Gromisz S., Barnes N., 2014. Species-specific effect of macrobenthic assemblages on meiobenthos and nematode community structure in shallow sandy sediments. Marine Biology, 161(1): 195–212.

Van Gaever S., Moodley L., De Beer D., Vanreusel A., 2006. Meiobenthos at the Arctic Håkon Mosby Mud Volcano, with a parental-caring nematode thriving in sulphide‒rich sediments. Marine Ecology Progress Series, 321: 143–155.

Vanaverbeke J., Merckx B., Degraer S., Vincx M., 2011. Sediment–related distribution patterns of nematodes and macrofauna: two sides of the benthic coin?. Marine Environmental Research, 71(1): 31–40.

Vincx M., 1996. Meiofauna in marine and fresh water sediments. In: Hall G. S, ed. Methods for the examination of organismal diversity in sils and sediments, CAB International, University Press, Cambridge, pp. 214–248.

Warwick R. M., Platt H. M., Somerfield P. J., 1988. Free living marine nematodes. Part III. Monhysterids. The Linnean Society of London and the Estuarine and Coastal Sciences Association, London.

Wieser W., 1953. Die Beziehung zwischen Mundhfhlengestalt, Ernhrungsweise und Vorkommen bei freilebenden marinen Nematoden. Arkiv for Zoologi, 2:


Zullini A., 2010. Identification Manual for Freshwater Nematode Genera. In Lecture Book for MSc. Nematology Ghent University: Ghent, Belgium.




How to Cite

Thai Thanh, T., My Yen, N. T., Ngoc Hoai, P., Nguyen Lu Nguyet , H., Nguyen Van, D., & Ngo Xuan, Q. (2023). Greenhouse gases concentrations influence on vertical distribution of nematode communities in the Ba Lai river, Vietnam. Academia Journal of Biology, 45(2), 105–122.