Expression analysis of genes encoding salt induced transport proteins in two contrasting rice cultivars with different salt stress tolerance
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/18301Keywords:
Oryza sativa, Doc Phung, IR28, salt stress, transport proteins, gene expression.Abstract
Soil salinization is a serious global problem that impedes the growth and development of numerous agricultural crops worldwide. Plants have evolved a diversity of adaptive mechanisms for coping with salt stress. Among the known mechanisms, the ability of plants to maintain intracellular ions and osmotic homeostasis via exclusion and compartmentalization of salt is highly correlated with high salt stress tolerance. Several transport proteins, such as high-affinity K+ transporter 1 (HKT1), high affinity K+/Na+ transporter 10 (HAK10), salt overly sensitive 1 (SOS1), and sodium/hydrogen exchanger 1 (NHX1), have been identified to be associated with the exclusion and compartmentalization of salt. In this study, an investigation was conducted to evaluate the expression of genes encoding SOS1, HKT1, HAK10, and NHX1 transporters in the leaf and root tissues of two contrasting rice cultivars, salt tolerant DP and salt sensitive IR28, under salt stress of 150 mM NaCl by RT-qPCR approach. RT-qPCR data revealed that the expression of HKT1, HAK10, SOS1, and NXH1 were upregulated at a higher level in the DP cultivar than in the IR28 cultivar in response to salt stress treatment. Our findings also suggest that the DP rice cultivar acquires a higher level of salt tolerance than the IR28 cultivar, at least a part due to a greater degree of Na+ exclusion and compartmentalization mechanisms provided by HKT1, HAK10, SOS1, and NXH1 transporters.
Downloads
Metrics
References
Ali A., Maggio A., Bressan R. A. and Yun D. J., 2019. Role and functional differences of HKT1-type transporters in plants under salt stress. Int. J. Mol. Sci., 20: 1−12. http://doi.org/10.3390/ijms20051059
FAO, 2018. Handbook for saline soil management. FAO: 1–144.
Farooq M., Park J. R., Jang Y. H., Kim E. G. and Kim K. M., 2021. Rice cultivars under salt stress show differential expression of genes related to the regulation of Na+/K+ balance. Front. Plant Sci., 12: 680131. http://doi.org/10.3389/fpls.2021.680131
Fogliatto S., Serra F., Patrucco L., Milan M. and Vidotto F., 2019. Effect of different water salinity levels on the germination of imazamox-resistant and sensitive weedy rice and cultivated rice. Agronomy, 9: 658−671. http://doi.org/10.3390/agronomy9100658
Hossain M., 2019. Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci., 1: 1−3.
Imran S., Horie T. and Katsuhara M., 2020. Expression and ion transport activity of rice OsHKT1;1 variants. Plants, 9: 1−12. http://doi.org/10.3390/plants9010016
Isayenkov S. V. and Maathuis F. J. M., 2019. Plant salinity stress: many unanswered questions remain. Front. Plant Sci., 10: 80−91. http://doi.org/10.3389/fpls.2019. 00080
Jaime-Pérez N., Pineda B., García-Sogo B., Atares A., Athman A., Byrt C. S., Olías R., Asins M. J., Gilliham M., Moreno V. et al., 2017. The sodium transporter encoded by the HKT1;2 gene modulates sodium/potassium homeostasis in tomato shoots under salinity. Plant Cell Environ., 40: 658−671. http://doi.org/10.1111/pce. 12883
Kamran M., Parveen A., Ahmar S., Malik Z., Hussain S., Chattha M. S., Saleem M. H., Adil M., Heidari P. and Chen J. T., 2020. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci., 21: 148−175. http://doi.org/10.3390/ijms2101 0148
Kumar S., Kalita A., Srivastava R. and Sahoo L., 2017. Co-expression of Arabidopsis NHX1 and bar improves the tolerance to salinity, oxidative stress, and herbicide in transgenic mungbean. Front. Plant Sci., 8: 1−18. http://doi.org/10.3389/fpls.2017.01 896
Livak K. J. and Schmittgen T. D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods, 25: 402−408. http://doi.org/http://dx.doi.org/10.1006/meth.2001.1262
Lotkowska M. E., Tohge T., Fernie A. R., Xue G. P., Balazadeh S. and Mueller-Roeber B., 2015. The Arabidopsis transcription factor MYB112 promotes anthocyanin formation during salinity and under high light stress. Plant Physiol. 169: 1862−1880. http://doi.org/10.1104/pp.15.00605
Muchate N. S., Nikalje G. C., Rajurkar N. S., Suprasanna P. and Nikam T. D., 2016. Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot. Rev., 82: 371−406. http://doi.org/10.1007/s12229-016-9173-y
Munns R. and Tester M., 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59: 651−681. http://doi.org/10.1146/ annurev.arplant.59.032607.092911
Neves G. Y. S., Marchiosi R., Ferrarese M. L. L., Siqueira-Soares R. and Ferrarese-Filho O., 2010. Root growth inhibition and lignification induced by salt stress in soybean. J. Agron. Crop Sci., 196: 467−473. http://doi.org/10.1111/j.1439-037X.2010.00432.x
Nguyen D. Q., Nguyen N. L., Nguyen V. T., Tran T. H. G., Nguyen T. H., Nguyen T. K. L. and Nguyen H. H., 2023. Comparative analysis of microRNA expression profiles in shoot and root tissues of contrasting rice cultivars (Oryza sativa L.) with different salt stress tolerance. PLoS One, 18: e0286140. http://doi.org/10.1371/journal.pone.0286140
Rolly N. K., Imran Q. M., Lee I. J. and Yun B. W., 2020. Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana. Int. J. Mol. Sci., 21: 1−17. http://doi.org/10.3390/ijms21051726
Shahid S. A., Zaman M. and Heng L., 2018. Soil salinity: historical perspectives and a world overview of the problem. Springer Int. Publishing: 43−53. http://doi.org/ 10.1007/978-3-319-96190-3_2
Sharwood R. E., Sonawane B. V. and Ghannoum O., 2014. Photosynthetic flexibility in maize exposed to salinity and shade. J. Exp. Bot. 65: 3715−3724. http://doi.org/10.1093/jxb/eru130
Sui N., Yang Z., Liu M. and Wang B., 2015. Identification and transcriptomic profiling of genes involved in increasing sugar content during salt stress in sweet sorghum leaves. BMC Genomics, 16: 534−552. http://doi.org/10.1186/s12864-015-1760-5
Wang H., Zhang M., Guo R., Shi D., Liu B., Lin X. and Yang C., 2012. Effects of salt stress on ion balance and nitrogen metabolism of old and young leaves in rice (Oryza sativa L.). BMC Plant Biol., 12: 194−205. http://doi.org/10.1186/1471-2229-12-194
Wang L., Liu Y., Li D., Feng S., Yang J., Zhang J., Zhang J., Wang D. and Gan Y., 2019. Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol., 19: 357−372. http://doi.org/10.1186/s12870-019-1963-z
Wang Q., Ni L., Cui Z., Jiang J., Chen C. and Jiang M., 2022. The NADPH oxidase OsRbohA increases salt tolerance by modulating K+ homeostasis in rice. Crop J., 10: 1611−1622. https://doi.org/ 10.1016/j.cj.2022.03.004
Zhang H. H., Xu N., Wu X., Wang J., Ma S., Li X. and Sun G., 2018. Effects of four types of sodium salt stress on plant growth and photosynthetic apparatus in sorghum leaves. J. Plant Int., 13: 506−513. http://doi.org/10.1080/17429145.2018.1526978
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Duc Quan Nguyen, Thi Huong Giang Tran , Huu Dung Do, Huy Hoang Nguyen
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.