Chemical composition of \(\textit{Elsholtzia ciliata}\) (Thunb.) Hyland essential oil in Vietnam with multiple biological utilities: a survey on antioxidant, antimicrobial, anticancer activities

Luu Tang Phuc Khang, Nguyen Huu Tai, Cao Van Len, Nguyen Ngoc Thu Phuong, Nguyen Hoang Viet, Truong Vinh, Phan Thanh Bach, Tran Thi Phuong Dung, Nguyen Xuan Tong
Author affiliations

Authors

  • Luu Tang Phuc Khang Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
  • Nguyen Huu Tai Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
  • Cao Van Len Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
  • Nguyen Ngoc Thu Phuong Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
  • Nguyen Hoang Viet Can Tho University of Medicine and Pharmacy, Can Tho City, Vietnam
  • Truong Vinh International School Ho Chi Minh City, Ho Chi Minh City, Vietnam
  • Phan Thanh Bach Nong Lam University, Ho Chi Minh City, Vietnam
  • Tran Thi Phuong Dung Ho Chi Minh City University of Education, Ho Chi Minh City, Vietnam
  • Nguyen Xuan Tong Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/18230

Keywords:

Anticancer, antimicrobial, antioxidant, Elsholtzia ciliata, essential oil.

Abstract

Elsholtzia ciliata (Thunb.) Hyland is commonly known as Vietnamese balm - a spicy, lemon-scented culinary herb in Asian cuisine, especially in Vietnam. The biological activities of E. ciliata essential oils (Ec EOs) in Vietnam have yet to be thoroughly studied and have received less attention than other species of genus Elsholtzia in the world. In this study, we evaluated the antioxidant, antimicrobial, and anticancer of Ec EOs and examined their chemical compositions. Fresh leaves of E. ciliata were hydro-distilled to yield essential oil of 0.82% dry weight, respectively. Gas chromatography-mass spectrometry (GC-MS) analyses revealed that Ec EOs principally possessed complex mixtures of monoterpenes and sesquiterpenes. (Z)-β-Farnesene (22.72%), neral (15.66%), geranial (15.62%), and β-ocimene (13.30%) were the major components of Ec EOs. In the antioxidant assay, the radical scavenging capacities of Ec EOs against DPPH were 26.55 g/L (IC50). In the antimicrobial assay, the evaluation of antimicrobial activity using the agar wells diffusion method showed that Ec EOs in all concentrations was active against the Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, Staphylococcus aureus), Gram-negative bacteria (Proteus mirabilis, Escherichia coli, Klebsiella pneumoniae). In the anticancer assay, EcE Os can be toxic to Hep G2 cells with IC50 reaching 0.00204%.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Abers M., Schroeder S., Goelz L., Sulser A., St. Rose T., Puchalski K. & Langland J., 2021. Antimicrobial activity of the volatile substances from essential oils. BMC Complementary Medicine and Therapies, 21(1): 124−138.

Adams R. P., 2005. Identification of essential oil components by gas chromatography/mass spectrometry. Journal of the American Society for Mass Spectrometry, 16: 1902–1903.

Afoulous S., Ferhout H., Raoelison E. G., Valentin A., Moukarzel B., Couderc F. & Bouajila J., 2013. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food and Chemical Toxicology, 56: 352−362.

Ahamad J., Uthirapathy S., Mohammed Ameen M. S. & Anwer E. T., 2020. Essential oil composition and antidiabetic, anticancer activity of Rosmarinus officinalis L. leaves from Erbil (Iraq). Journal of Essential Oil Bearing Plants, 22(6): 1544−1553.

Badalamenti N., Bruno M., Formisano C. & Rigano D., 2022. Effect of germacrene-rich essential oil of Parentucellia latifolia L. Caruel collected in Central Sicily on the Growth of microorganisms inhabiting historical textiles. Natural Product Communications, 17(4).

Barbieri R., Coppo E., Marchese A., Daglia M., Sobarzo-Sánchez E., Nabavi S. F. & Nabavi S. M., 2017. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological Research, 196: 44−68.

Bellik F. Z., Benkaci-Ali F., Alsafra Z., Eppe G., Tata S., Sabaou N. & Zidani R., 2019. Chemical composition, kinetic study and antimicrobial activity of essential oils from Cymbopogon schoenanthus L. Spreng extracted by conventional and microwave-assisted techniques using cryogenic grinding. Industrial Crops and Products, 139: 111505.

Boulanouar B., Abdelaziz G., Aazza S., Gago C. & Miguel M. G., 2013. Antioxidant activities of eight Algerian plant extracts and two essential oils. Industrial Crops and Products, 46: 85−96.

Bui T. B., Vu T. Q., Dau T. B. & Ogunwande I. A., 2022. Chemical composition and antimicrobial activity of the essential oils obtained from the leaves and stems of Schisandra perulata Gagnep. Journal of Essential Oil Bearing Plants, 25(4): 773–782.

Cai J., Wang S., Gao Y. & Wang Q., 2022. Antibacterial activity and mechanism of Polygonum orientale L. essential oil against Pectobacterium carotovorum subsp. carotovorum. Foods, 11(11): 1585.

Choi M. S., Choi B. S., Kim S. H., Pak S. C., Jang C. H., Chin Y. W., Kim Y. M., Kim D., Jeon S. & Koo B. S., 2015. Essential oils from the medicinal herbs upregulate dopamine transporter in rat pheochromocytoma cells. Journal of Medical Food, 18(10): 1112−1120.

Colţun M., Roşca I., Gille E., Colţun M. & Dan N. R., 2021. Biomorphological and biochemical peculiarities of the growth and development of the species Elsholtzia ciliata (Thunb.) Hyl. under the pedoclimatic conditions of the Republic of Moldova. Studia Universitatis Moldaviae (Seria Ştiinţe Reale şi ale Naturii), 146(6): 34−38.

Ganot N., Meker S., Reytman L., Tzubery A. & Tshuva E. Y., 2013. Anticancer metal complexes: Synthesis and cytotoxicity evaluation by the MTT assay. Journal of Visualized Experiments, 81: 50767.

Goñi P., López P., Sánchez C., Gómez-Lus R., Becerril R. & Nerín C., 2009. Antimicrobial activity in the vapour phase of a combination of cinnamon and clove essential oils. Food Chemistry, 116(4): 982−989.

Guo Z., Liu Z., Wang X., Liu W., Jiang R., Cheng R. & She G., 2012. Elsholtzia: Phytochemistry and biological activities. Chemistry Central Journal, 6(1): 1−8.

Kim C., Cho S. K., Kapoor S., Kumar A., Vali S., Abbasi T., Kim S. H., Sethi G. Ahn K. S., 2014. β-caryophyllene oxide inhibits constitutive and inducible STAT3 signaling pathway through induction of the SHP-1 protein tyrosine phosphatase. Molecular Carcinogenesis, 53(10): 793−806.

Kim H. H., Yoo J. S., Lee H. S., Kwon T. K., Shin T. Y. & Kim S. H., 2011. Elsholtzia ciliata inhibits mast cell-mediated allergic inflammation: role of calcium, p38 mitogen-activated protein kinase and nuclear factor-κB. Experimental Biology and Medicine, 236(9): 1070−1077.

Kim J. H. & Jung D. H., 2003. Variations in volatile compounds from Elshoizia cilliata. Journal of Plant Biology, 46(4): 287−289.

Koul H. K., Pal M. & Koul S., 2013. Role of p38 MAP Kinase signal transduction in solid tumors. Genes and Cancer, 4(9): 342−359.

Liang J. Y., Xu J., Yang Y. Y., Shao Y. Z., Zhou F. & Wang J. L., 2020. Toxicity and synergistic effect of Elsholtzia ciliata essential oil and its main components against the adult and larval stages of Tribolium castaneum. Foods, 9(3): 345–358.

Lim A. C., Tang S. G. H., Zin N. M., Maisarah A. M., Ariffin I. A., Ker P. J. & Mahlia T. M. I., 2022. Chemical composition, antioxidant, antibacterial, and antibiofilm activities of Backhousia citriodora essential oil. Molecules, 27(15): 4895–4915.

Liu A., Ming-Yuen Lee S., Liu A. L., Lee S. M., Wang Y. T. & Du G. H., 2007. Elsholtzia: review of traditional uses, chemistry and pharmacology. Journal of Chinese Pharmaceutical Sciences, 16(2): 73.

Liu X., Jia J., Yang L., Yang F., Ge H., Zhao C., Zhang L. & Zu Y., 2012. Evaluation of antioxidant activities of aqueous extracts and fractionation of different parts of Elsholtzia ciliata. Molecules, 17(5): 5430−5441.

Mukhammadjon J., Dilshod R., & Botirov E., 2022. Essential oil composition of two species of scutellaria aerial parts from Uzbekistan and their antimicrobial activities. Best Scientific Research, 1(1): 208−215.

Nafis A., Kasrati A., Jamali C. A., Mezrioui N., Setzer W., Abbad A., & Hassani L., 2019. Antioxidant activity and evidence for synergism of Cannabis sativa (L.) essential oil with antimicrobial standards. Industrial Crops and Products, 137: 396−400.

Navarra M., Ferlazzo N., Cirmi S., Trapasso E., Bramanti P., Lombardo G. E., Minciullo P. L., Calapai G. & Gangemi S., 2015. Effects of bergamot essential oil and its extractive fractions on SH-SY5Y human neuroblastoma cell growth. Journal of Pharmacy and Pharmacology, 67(8): 1042−1053.

Nazzaro, F., Fratianni F., Coppola R., & De Feo V. 2017. Essential oils and antifungal activity. Pharmaceuticals, 10(4): 86.

Nguyen D. T. X., Tran H., Schwaiger S., Stuppner H. & Marzocco S., 2021. Effect of non-volatile constituents of Elsholtzia ciliata (Thunb.) Hyl. from Southern Vietnam on reactive oxygen species and nitric oxide release in macrophages. Chemistry & Biodiversity, 18(1): e2000577.

Nguyen D. X., Le H. V., Le H. H. & Leclercq P. A., 2011. Composition of the essential oils from the aerial parts of Elsholtzia ciliata (Thunb.) Hyland. from Vietnam. Journal of Essential Oil Research, 8(1): 107–109.

Nguyen V. N. & Hoang T. B., 2022. The antimicrobial activity and chemical composition of Elsholtzia blanda (Benth.) essential oils in Lam Dong province, Viet Nam. Can Tho University Journal of Science, 14(3): 72−77.

Pingzhao M., Chaoliu X., Lai D., Zhou L. & Longliu Z., 2016. Analysis of the essential oil of Elsholtzia ciliate aerial parts and its insecticidal activities against Liposcelis bostrychophila. Helvetica Chimica Acta, 99(1): 90−94.

Pudziuvelyte L., Jakštas V., Ivanauskas L., Laukevičienė, A., Ibe C. F. D., Kursvietiene L. & Bernatoniene J., 2018. Different extraction methods for phenolic and volatile compounds recovery from Elsholtzia ciliata fresh and dried herbal materials. Industrial Crops and Products, 120: 286−294.

Pudziuvelyte L., Liaudanskas M., Jekabsone A., Sadauskiene I. & Bernatoniene J., 2020. Elsholtzia ciliata (Thunb.) Hyl. Extracts from different plant parts: Phenolic composition, antioxidant, and anti-inflammatory activities. Molecules, 25(5): 1153.

Pudziuvelyte L., Stankevicius M., Maruska A., Petrikaite V., Ragazinskiene O., Draksiene G. & Bernatoniene J., 2017. Chemical composition and anticancer activity of Elsholtzia ciliata essential oils and extracts prepared by different methods. Industrial Crops and Products, 107: 90–96.

Rodrigues K. A. D. F. Amorim L. V., Dias C. N., Moraes D. F. C., Carneiro S. M. P. & Carvalho F. A. D. A., 2015. Syzygium cumini (L.) Skeels essential oil and its major constituent α-pinene exhibit anti-Leishmania activity through immunomodulation in vitro. Journal of Ethnopharmacology, 160: 32−40.

Sousa J. M. S. D., Nunes T. A. D. L., Rodrigues R. R. L., Sousa J. P. A. D., Val M. D. C. A., Coelho F. A. D. R., ... & Rodrigues K. A. D. F., 2023. Cytotoxic and antileishmanial effects of the monoterpene β-ocimene. Pharmaceuticals, 16(2): 183.

Sripahco T., Khruengsai S., Charoensup R., Tovaranonte J. & Pripdeevech P., 2022. Chemical composition, antioxidant, and antimicrobial activity of Elsholtzia beddomei C. B. Clarke ex Hook. f. essential oil. Scientific Reports, 12(1): 1−8.

Tan W. N., Lim J. Q., Afiqah F., Nik Mohamed Kamal N. N. S., Abdul Aziz F. A., Tong W. Y., ... & Lim J. W., 2018. Chemical composition and cytotoxic activity of Garcinia atroviridis Griff. ex T. Anders. essential oils in combination with tamoxifen. Natural product research, 32(7): 854−858.

Thanaseelungkoon N., Julsrigival J., Phannachet K. & Chansakaow S., 2018. Chemical compositions and biological activities of essential oils obtained from some Apiaceous and Lamiaceous plants collected in Thailand. Asian Pacific Journal of Tropical Medicine, 11(8): 486.

Thappa R. K., Agarwal S. G., Kapahl B. K. & Srivastava T. N., 2011. Chemosystematics of the Himalayan Elsholtzia. Journal of Essential Oil Research, 11(1): 97−103.

Tian G., 2013. Chemical constituents in essential oils from Elsholtzia ciliata and their antimicrobial activities. Chinese Herbal Medicines, 5(2): 104−108.

Wang F., Liu X., Chen Y., An Y., Zhao W., Wang L., Tian J., Kong D., Xu Y., Ba Y. & Zhou H., 2022. Elsholtzia ciliata (Thunb.) Hyland: A review of phytochemistry and pharmacology. Molecules, 27(19): 6411.

Wang X., Gong L. & Jiang H., 2017. Study on the difference between volatile constituents of the different parts from Elsholtzia ciliata by SHS-GC-MS. American Journal of Analytical Chemistry, 8(10): 625−635.

Wu C. Y. & Li X. W., 1977. Flora reipublicae popularis sinicae. Science Press, Beijing, 66: 287−292.

Zhang D. Y., Yao X. H., Duan M. H., Wei F. Y., Wu G. H. & Li L., 2015. Variation of essential oil content and antioxidant activity of Lonicera species in different sites of China. Industrial Crops and Products, 77: 772−779.

Downloads

Published

29-09-2023

How to Cite

Luu Tang Phuc, K., Nguyen, H. T., Cao, V. L., Nguyen, N. T. P., Nguyen, H. V., Truong, V., Phan, T. B., Phuong Dung, T. T., & Xuan Tong, N. (2023). Chemical composition of \(\textit{Elsholtzia ciliata}\) (Thunb.) Hyland essential oil in Vietnam with multiple biological utilities: a survey on antioxidant, antimicrobial, anticancer activities. Academia Journal of Biology, 45(3), 99–110. https://doi.org/10.15625/2615-9023/18230

Issue

Section

Articles