Free radical scavenging effect of extracts from \(\textit{Isaria cicadae}\) F0004 in Vietnam
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/18095Keywords:
Isaria cicadae, free radical scavenging activity, biomass, fruit bodies, RAW 264.7 cells.Abstract
Isaria cicadae, currently identified as Paecilomyces cicadae (Miq.) Samson (Cordycipitaceae, Hypocreales, Ascomycetes), is a parasitic fungus on cicadas and is considered a folk medicine in traditional medicine. In this research, the antioxidant activity of some extracts from the biomass and fruit bodies of Isaria cicadae F0004 isolated in Vietnam was investigated. The results showed that the Ethyl acetate (EA) fraction extract of the biomass of Isaria cicadae F0004 exhibited the best antioxidant activity in vitro, with IC50 values of 159.73 ± 7.33 μg/mL (DPPH assay) and 379.25 ± 7.33 μg/mL (ABTS assay). Meanwhile, the EA fraction extract of the fruit bodies of I. cicadae F0004 showed antioxidant activity with IC50 values of 90.8 ± 2.36 μg/mL (xanthine oxidase inhibition), 68.631 ± 0.632 μg/mL (protein membrane protection), 19.042 ± 1.072 μg/mL (lipid membrane protection). Furthermore, the EA fraction extract of the fruit bodies of I. cicadae F0004 exhibited a strong capability for DNA damage protection at 100 μg/mL concentration and ∆OD4000 μg/mL = 0.422 ± 0.014 (reducing power). Therefore, the EA fraction extract of I. cicadae F0004 serves as an effective free radical scavenger and a potential source of natural antioxidants, and this study contributes more information on the biological activities of I. cicadae F0004 from local raw materials.
Downloads
Metrics
References
Ahn M. Y., Heo J. E., Ryu J. H., Ji S. D., Jeong H., Park H. C., Sim H.S., 2008. Antioxidant Activity of N-hydroxyethyl Adenosine from Isaria sinclairii. International Journal of Industrial Entomology, 17(2): 197−200.
Alurappa R., Bojegowda M. R., Kumar V., Mallesh N. K., Chowdappa S., 2014. Characterisation and bioactivity of oosporein produced by endophytic fungus Cochliobolus kusanoi isolated from Nerium oleander L. Natural Product Research, 28(23): 2217–2220.
Ebrahimzadeh M. A., Nabavi S. M., Nabavi S. F., Eslami S., 2010. Antioxidant and free radical scavenging activities of culinary-medicinal mushrooms, golden chanterelle Cantharellus cibarius and Angel’s wings Pleurotus porrigens. International Journal of Medicinal Mushrooms, 12(3): 265–272.
Ferreira I. C., Baptista P., Vilas-Boas M., Barros L., 2007. Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry, 100(4): 1511–1516.
Kallel F., Driss D., Chaari F., Belghith L., Bouaziz F., Ghorbel R., Chaabouni S. E., 2014. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Industrial Crops and Products, 62: 34–41.
Kikuzaki H., Nakatani N., 1993. Antioxidant effects of some ginger constituents. Journal of Food Science, 58(6): 1407–1410.
Lao T. D., Trinh H. V., Vuong L., Vu L. T., Le T. A. H., Dinh H. M., Truong N. B. 2021. Molecular record for the first authentication of Isaria cicadae from Vietnam. Open Life Sciences, 16: 711−718.
Lam Khac Ky, Le Thi Kim Cuong, Van Thi Xuan Thuong, Dinh Minh Hiep, Ngo Dai Hung, 2021. Antioxidant and anti-inflammatory activities in vitro of Cordyceps takamontana DL0038A extracts isolated in Vietnam. Thu Dau Mot University Journal of Science, 2(51): 3–13 (In Vietnamese with English summary).
Levine R. L., Garland D., Oliver C. N., Amici A., Climent I., Lenz A. G., Ahn B. W., Shaltiel S., Stadtman E. R., 1990. Determination of carbonyl content in oxidatively modified proteins Methods in Enzymology, Academic Press, 186: 464–478.
Li Z. Z., Chen Z. A., Chen Y. P., 2014. Golden cicada flower, a national treasure. Hefei, China: Hefei University of Technology Press.
Lin S., Liu Z. Q., Xue Y.P., Baker P. J., Wu H., Xu F., Teng Y., Brathwaite M. E., Zheng Y.G., 2016. Biosynthetic pathway analysis for improving cordycepin and cordycepic acid production in Hirsutella sinensis. Applied Biochemistry and Biotechnology, 179: 633–649.
Lu Y., Luo F., Cen K., Yin Y., Zhan S., Wang C., Zhang H., Xiao G., Li C., Li Z., 2017. Omics data reveal the unusual asexual-fruiting nature and secondary metabolic potentials of the medicinal fungus Cordyceps cicadae. BMC Genomics, 18: 1–15.
Milne L., Nicotera P., Orrenius S., Burkitt M. J., 1993. Effects of glutathione and chelating agents on copper-mediated DNA oxidation: pro-oxidant and antioxidant properties of glutathione. Archives of Biochemistry and Biophysics, 304(1): 102–109.
Nakamura K., Shinozuka K., Yoshikawa N., 2015. Anticancer and antimetastatic effects of cordycepin, an active component of Cordyceps sinensis. Journal of Pharmacological Sciences, 127(1):
–56.
Nenadis N., Wang L. F., Tsimidou M., Zhang H. Y., 2004. Estimation of scavenging activity of phenolic compounds using the ABTS•+ assay. Journal of Agricultural and Food Chemistry, 52(15): 4669–4674.
Nguyen K. P. P., 2007. Technology to extract natural compounds from plants. Methods for isolating natural compounds. National University Publishing, Ho Chi Minh city (In Vietnamese).
Noro T., Oda Y., Miyase T., Ueno A., Fukushima S., 1983. Inhibitors of xanthine oxidase from the flowers and buds of Daphne genkwa. Chemical and Pharmaceutical Bulletin, 31(11): 3984–3987.
Olatunji O. J., Feng Y., Olatunji O. O., Tang J., Ouyang Z., Su Z., 2016. Cordycepin protects PC12 cells against 6-hydroxydopamine induced neurotoxicity via its antioxidant properties. Biomedicine and Pharmacotherapy, 81: 7–14.
Prommaban A., Sriyab S., Marsup P., Neimkhum W., Sirithunyalug J., Anuchapreeda S., Chaiyana W., 2022. Comparison of chemical profiles, antioxidation, inhibition of skin extracellular matrix degradation, and anti-tyrosinase activity between mycelium and fruiting body of Cordyceps militaris and Isaria tenuipes. Pharmaceutical Biology, 60(1): 225–234.
Quy T. N., Xuan T. D., 2019. Xanthine oxidase inhibitory potential, antioxidant and antibacterial activities of Cordyceps militaris (L.) Link fruiting body. Medicines (Basel), 6(1): 20.
Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39(1): 44–84.
Xiaofeng Zhang, Qiongbo Hu and Qunfang Weng, 2019. Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes. RSC Advances., 9: 172–184.
Yadav M., Yadav A., Yadav J. P., 2014. In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pacific Journal of Tropical Medicine, 7: S256–S261.
Zhang X., Hu Q., Weng Q., 2019. Secondary metabolites (SMs) of Isaria cicadae and Isaria tenuipes. RSC Advances, 9(1): 172–184.
Zheng L. P., Gao L.W., Zhou J. Q., Sima Y. H., Wang J. W., 2008. Antioxidant activity of aqueous extract of a Tolypocladium sp. fungus isolated from wild Cordyceps sinensis. African Journal of Biotechnology, 7(17): 3004–3010.
Zhou X., Gong Z., Su Y., Lin J., Tang K., 2009. Cordyceps fungi: natural products, pharmacological functions and developmental products. Journal of Pharmacy and Pharmacology, 61(3): 279–291.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Khac Ky Lam, Thi Nguyet Huynh, Minh Hiep Dinh, Hung Dai Ngo
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.