Haplotype of \(\textit{TEX15}\) single nucleotide variants associated with male infertility in 401 Vietnamese individuals
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/17945Keywords:
Haplotype, male infertility, PCR-RFLP, rs323347, TEX15, Vietnamese.Abstract
Spermatogenesis is a process of cell differentiation to produce fertilized sperm. Testis-expressed 15 (TEX15), an important gene in spermatogenesis, has been reported to be linked with male infertility in various populations. This study aimed to assess the association of single nucleotide polymorphism (SNP) TEX15 rs323347 with male infertile individuals in a Vietnamese cohort and further analyze the haplotypes of TEX15 rs323346 and TEX15 rs323347. A total of 401 unrelated males, including 202 male infertility patients and 199 healthy controls were genotyped for TEX15 rs323347 using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Using statistical methods, the results showed that the allele frequencies of TEX15 rs323347 were in agreement with Hardy-Weinberg equilibrium (HWE) (p-value > 0.05), but its genotype frequencies were not significantly different between male infertility patient and control groups (p-values > 0.05). However, the CA haplotype of the two variants (rs323346 and rs323347) increased the risk of male infertility (p = 0.046, OR = 2.547, 95% CI = 0.982–6.602). Thus, this study would enrich the knowledge of the impact of genetic factors on male infertility in the Vietnamese population.
Downloads
Metrics
References
Aragon T. J., Fay M., Wollschlaeger D., 2020. “epitools: Epidemiology Tools. R package version 0.5-10.1.” In.
Aston K. I., Krausz C., Laface I., Ruiz-Castane E., Carrell D. T., 2010. Evaluation of 172 candidate polymorphisms for association with oligozoospermia or azoospermia in a large cohort of men of European descent. Human Reproduction, 25(6): 1383−1397.
Bellil H., Ghieh F., Hermel E., Mandon-Pepin B., Vialard F., 2021. Human testis-expressed (TEX) genes: a review focused on spermatogenesis and male fertility. Basic and Clinical Andrology, 31(1): 9.
Colombo R., Pontoglio A., Bini M., 2017. Two novel TEX15 mutations in a family with nonobstructive azoospermia. Gynecologic and Obstetric Investigation, 82(3): 283−286.
Ghadirkhomi E., Angaji S. A., Khosravi M., Mashayekh M. R., 2022. Correlation of Novel Single Nucleotide Polymorphisms ofUSP26, TEX15, and TNP2 Genes with Male Infertility in North West of Iran. International Journal of Fertility & Sterility, 16(1): 10−16.
Graffelman J., 2015. Exploring Diallelic Genetic Markers: The HardyWeinberg Package. Journal of Statistical Software, 64(3): 1−23. https://www.jstatsoft.org/ index.php/jss/article/view/v064i03
Hermann B. P., Cheng K., Singh A., Roa-De La Cruz L., Mutoji K. N., Chen I. C., Gildersleeve H., Lehle J. D., Mayo M., Westernströer B., Law N. C., Oatley M. J., Velte E. K., Niedenberger B. A., Fritze D., Silber S., Geyer C. B., Oatley J. M., McCarrey J. R., 2018. The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids. Cell Reports, 25(6): 1650−1667.
Hess R. A., Renato de Franca L., 2008. Spermatogenesis and cycle of the seminiferous epithelium. Advances in Experimental Medicine and Biology, 636: 1−15.
Jahantigh D., Hosseinzadeh Colagar A., Salimi S., 2017. Genetic polymorphisms and haplotypes of the DJ-1 gene promoter associated with the susceptibility to male infertility. J Assist Reprod Genet, 34(12): 1673−1682.
Krausz C., Riera-Escamilla A., 2018. Genetics of male infertility. Nature Reviews Urology, 15(6): 369−384.
Kumar N., Singh A. K., 2022. Impact of environmental factors on human semen quality and male fertility: a narrative review. Environmental Sciences Europe, 34(1): 6.
Li Z., Zhang Z., He Z., Tang W., Li T., Zeng Z., He L., Shi Y., 2009. A partition-ligation-combination-subdivision EM algorithm for haplotype inference with multiallelic markers: update of the SHEsis (http://analysis.bio-x.cn). Cell Research, 19(4): 519−523.
Linn E., Ghanem L., Bhakta H., Greer C., Avella M., 2021. Genes Regulating Spermatogenesis and Sperm Function Associated With Rare Disorders. Frontiers in Cell and Developmental Biology, 9: 634536.
Loriot A., Boon T., De Smet C., 2003. Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. International Journal of Cancer, 105(3): 371−376.
Okutman O., Muller J., Baert Y., Serdarogullari M., Gultomruk M., Piton A., Rombaut C., Benkhalifa M., Teletin M., Skory V., Bakircioglu E., Goossens E., Bahceci M., Viville S., 2015. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Human Molecular Genetics, 24(19): 5581−5588.
Nguyen Phuong Anh, La Duc Duy, Bui Minh Duc, Nguyen Thuy Duong, 2023. The association of TEX15 rs323346 with male infertility in 401 Vietnamese individuals. TNU Journal of Science and Technology, 228(01): 342−348. (In Vietnamese with English summary).
Piekarska K., Radwan P., Tarnowska A., Wiśniewski A., Krasiński R., Radwan M., Wilczyński J. R., Malinowski A., Nowak I., 2021. The Association of HLA-G Gene Polymorphism and Its Soluble Form With Male Infertility. Frontiers in immunology, 12: 791399.
Plaseski T., Noveski P., Popeska Z., Efremov G.D., Plaseska-Karanfilska D., 2012. Association study of single-nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility. Journal of Andrology, 33(4): 675−683.
R Core Team, 2021. R: A language and environment for statistical computing. https://www.R-project.org/
Ruan J., He X. J., Du W. D., Chen G., Zhou Y., Xu S., Zuo X. B., Fang L. B., Cao Y. X., Zhang X. J., 2012. Genetic variants in TEX15 gene conferred susceptibility to spermatogenic failure in the Chinese Han population. Reproductive Sciences, 19(11): 1190−1196.
Shi Y. Y., He L., 2005. SHEsis, a powerful software platform for analyses of linkage disequilibrium, haplotype construction, and genetic association at polymorphism loci. Cell Research, 15(2): 97−98.
Wang P. J., McCarrey J. R., Yang F., Page D. C., 2001. An abundance of X-linked genes expressed in spermatogonia. Nat Genet, 27(4): 422−426.
Wang P. J., Page D. C., McCarrey J. R., 2005. Differential expression of sex-linked and autosomal germ-cell-specific genes during spermatogenesis in the mouse. Human Molecular Genetics, 14(19): 2911−2918.
Wang X., Jin H.R., Cui Y.Q., Chen J., Sha Y.W., Gao Z.L., 2018. Case study of a patient with cryptozoospermia associated with a recessive TEX15 nonsense mutation. Asian journal of andrology, 20(1): 101−102.
WHO. Infertility., 2020. https://www.who.int/ news-room/fact-sheets/detail/infertility. (Accessed 2023).
Yang F., Eckardt S., Leu N. A., McLaughlin K. J., Wang P. J., 2008. Mouse TEX15 is essential for DNA double-strand break repair and chromosomal synapsis during male meiosis. Journal of Cell Biology, 180(4): 673−679.
Zhang X., Ding M., Ding X., Li T., Chen H., 2015. Six polymorphisms in genes involved in DNA double-strand break repair and chromosome synapsis: association with male infertility. Systems Biology in Reproductive Medicine, 61(4): 187−193.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Nguyen Phuong Anh, Bui Minh Duc, Huynh Thi Thu Hue, Nguyen Thuy Duong
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.