Bacterial diversity in the sediments of three lagoons in Central Vietnam

Tran Thi Hong, Pham Viet Cuong, Nguyen Van Phuong
Author affiliations

Authors

  • Tran Thi Hong Mientrung Institute for Scientific Research, Vietnam National Museum, VAST, Vietnam
  • Pham Viet Cuong University of Science and Technology of Hanoi, VAST, Vietnam
  • Nguyen Van Phuong University of Science and Technology of Hanoi, VAST, Vietnam

DOI:

https://doi.org/10.15625/2615-9023/17902

Keywords:

16S rRNA, Bacterial diversity, Lagoon, Nai, Tam Giang, Thi Nai, V3V4 regions.

Abstract

The prokaryotic community in sediment plays an important role in the nutrient cycles of lagoon ecosystems. However, the diversity of microbiota in sediments of Vietnamese lagoons has not been discovered. In this study, sediment samples from three lagoons in Central Vietnam were collected. The microbial community structure in the sediments was determined using Illumina sequencing of 16S rRNA at V3V4 regions. Mother software was used to analyze the data and identify the Operational Taxonomic Units (OTUs). Proteobacteria, Firmicutes, Campilobacterota, and Bacteroidetes were the major phyla in three lagoons, while Fusobacteria, Verrucomicrobia, Acidobacteria, Actinobacteria, and Chloroflexi were the minor. These groups of bacteria have been reported to be involved in organic metabolism cycles in sediments. Tam Giang lagoon showed more diversity in species composition when compared with Nai and Thi Nai lagoons. Class Clostridia were predominant in Tam Giang sediment (46%), which may indicate the presence of organic sewage in the environment. Thi Nai and Nai lagoons witnessed the significant presence of Lactobacilales and Vibrionales. While Vibrionales is an indicator of urban pollution, Lactobacilales and other groups of phylum Actinobacteria were potential materials for the screening of natural antibiotics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Ajao E. A., Fagade S. O., 1990. A study of the sediments and communities in Lagos Lagoon, Nigeria. Oil Chem. Pollut., 7: 85–117.

Alakomi H. L., Skyttä E., Saarela M., Mattila-Sandholm T., Latva-Kala K., Helander I. M., 2000. Lactic acid permeabilizes gram-negative bacteria by disrupting the outer membrane. Appl. Environ. Microbiol., 66: 2001–2005. https://doi.org/10.1128/ AEM.66.5.2001-2005.2000

Beleneva I. A., Zhukova N. V., Le Lan H., Tran D. H. N., 2007. Taxonomic composition of bacteria associated with cultivated mollusks Crassostrea lugubris and Perna viridis and with the water of the Gulf of Nha Trang lagoon, Vietnam. Microbiology, 76: 220–228.

Borin S., Brusetti L., Daffonchio D., Delaney E., Baldi F., 2009. Biodiversity of prokaryotic communities in sediments of different sub-basins of the Venice lagoon. Res. Microbiol., 160: 307–314.

Cardman Z., Arnosti C., Durbin A., Ziervogel K., Cox C., Steen A. D., Teske A., 2014. Verrucomicrobia are candidates for polysaccharide-degrading bacterioplankton in an Arctic fjord of Svalbard. Appl. Environ. Microbiol., 80: 3749–3756.

Chaouni B., Azami A. I., Essayeh S., Arrafiqui E. H., Bailal A., Raoui S., Amzazi S., Twaddle A., El Hamouti C., Boukhatem N., Timinouni M., El Otmani F., Chahboune R., Barrijal S., El Homani A., Nejjari C., Zaid E. H., Hamamouch N., Bakkali F., Amaral-Zettler L., Ghazal H., 2022. Moroccan Lagoon Microbiomes. Water (Switzerland): 14.

Chapelle A., 1995. A preliminary model of nutrient cycling in sediments of a Mediterranean lagoon. Ecol. Modell., 80: 131–147.

Dang H., Lovell C. R., 2000. Bacterial primary colonization and early succession on surfaces in marine waters as determined by amplified rRNA gene restriction analysis and sequence analysis of 16S rRNA genes. Appl. Environ. Microbiol., 66: 467–475. https://doi.org/ 10.1128/AEM.66.2.467-475.2000

De Vuyst L., Leroy F., 2007. Bacteriocins from lactic acid bacteria: Production, purification, and food applications. J. Mol. Microbiol. Biotechnol., 13: 194–199.

de Wit R., 2011. Biodiversity of Coastal Lagoon Ecosystems and Their Vulnerability to Global Change, in: Grillo, O. (Ed.), Ecosystems Biodiversity. InTech: 29–40.

Forsberg C., 1989. Importance of sediments in understanding nutrient cyclings in lakes. Hydrobiologia, 176: 263–277.

Garay E., Arnau A., Amaro C., 1985. Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle. Appl. Environ. Microbiol., 50: 426–430.

Garrido J., Perez-Bilbao A., Joao C., 2011. Biodiversity and Conservation of Coastal Lagoons, in: Grillo, O. (Ed.), Ecosystems Biodiversity. InTech: 1–29.

Greening C., Carere C. R., Rushton-Green R., Harold L. K., Hards K., Taylor M. C., Morales S. E., Stott M. B., Cook G. M., 2015. Persistence of the dominant soil phylum Acidobacteria by trace gas scavenging. Proceedings of the National Academy of Sciences, 112:

–10502.

Gupta R. S., 2000. The phylogeny of proteobacteria: Relationships to other eubacterial phyla and eukaryotes. FEMS Microbiol. Rev., 24: 367–402.

Guyoneaud Rémy Matheron R., Liesack W., Imhoff J. F., Caumette P., 1997. Thiorhodococcus minus, gen. nov., sp. nov., a new purple sulfur bacterium isolated from coastal lagoon sediments. Arch. Microbiol., 168: 16–23.

Guyoneaud R, Matheron R., Liesack W., Imhoff J. F., Caumette P., 1997. Thiorhodococcus minus, gen. nov., sp. nov., A new purple sulfur bacterium isolated from coastal lagoon sediments. Arch. Microbiol., 168: 16–23.

Guyoneaud R., Mouné S., Eatock C., Bothorel V., Hirschler-Réa A., Willison J., Duran R., Liesack W., Herbert R., Matheron R., Caumette P., 2002. Characterization of three spiral-shaped purple nonsulfur bacteria isolated from coastal lagoon sediments, saline sulfur springs, and microbial mats: Emended description of the genus Roseospira and description of Roseospira marina sp. nov., Roseospira nava. Arch. Microbiol., 178: 315–324.

Ha N. T., Pham T. D., Tran T. T. H., 2021. Zoning Seagrass Protection in Lap An Lagoon, Vietnam Using a Novel Integrated Framework for Sustainable Coastal Management. Wetlands, 41: 1–15.

Herbert R. A., 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol. Rev., 23: 563–590.

Hussein E. I., Jacob J. H., Shakhatreh M. A. K., Abd Al-Razaq, M. A., Juhmani, A. S. F., Cornelison C. T., 2018. Detection of antibiotic-producing Actinobacteria in the sediment and water of Ma’in thermal springs (Jordan). Germs, 8: 191–198.

Issazadeh K., Pahlaviani M. R. M. K., Massiha A., n.d. Isolation of Lactobacillus Species from Sediments of Caspian Sea for Bacteriocin Production.

Mann A. J., Hahnke R. L., Huang S., Werner J., Xing P., Barbeyron T., Huettel B., Stüber K., Reinhardt R., Harder J., Glöckner F. O., Amann R. I., Teeling H., 2013. The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Appl. Environ. Microbiol., 79: 6813–6822.

Mckew B. A., Dumbrell A. J., Taylor J. D., Mcgenity T. J., Underwood G. J. C., 2013. Differences between aerobic and anaerobic degradation of microphytobenthic biofilm-derived organic matter within intertidal sediments. FEMS Microbiol. Ecol., 84: 495–509.

Nguyen C., Truong-Si H. T., 2006. Zooplankton abundance and species diversity in Qui Nhon coastal waters, South Central Vietnam in June 2004. Coast. Mar. Sci., 30: 328–333.

Pelikan C., Wasmund K., Glombitza C., Hausmann B., Herbold C. W., Flieder M., Loy A., 2021. Anaerobic bacterial degradation of protein and lipid macromolecules in subarctic marine sediment. ISME J., 15: 833–847.

Ribeiro I., Girão M., Alexandrino D. A. M., Ribeiro T., Santos C., Pereira F., Mucha A. P., Urbatzka R., Leão P. N., Carvalho M. F., 2020. Diversity and bioactive potential of actinobacteria isolated from a coastal marine sediment in Northern Portugal. Microorganisms, 8: 1–16.

Savitha T., Khalifa A., Sankaranarayanan A., 2022. Isolation of Actinobacteria from Soil and Marine Sediment Samples BT - Methods in Actinobacteriology, in: Dharumadurai, D. (Ed.). Springer US, New York, NY, pp. 1–5. https://doi.org/ 10.1007/978-1-0716-1728-1_1

Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., Robinson C. J., Sahl J. W., Stres B., Thallinger G. G., Van Horn D. J., Weber C. F., 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol., 75: 7537–7541.

Skanavis C., Yanko W. A., 2001. Clostridium perfringens as a potential indicator for the presence of sewage solids in marine sediments. Mar. Pollut. Bull., 42: 31–35.

Thiel V., Fukushima S. I., Kanno N., Hanada S., 2019. Chloroflexi. Encycl. Microbiol., 4e: 651–662.

Vincent P., Pignet P., Talmont F., Bozzi L., Fournet B., Guezennec J., Jeanthon C., Prieur D., 1994. Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol., 60: 4134–4141.

Wu C., Zhang G., Xu W., Jian S., Peng L., Jia D., Sun J., 2021. New estimation of antibiotic resistance genes in sediment along the Haihe River and Bohai Bay in China: A comparison between single and successive DNA extraction methods. Front. Microbiol., 12: 1–14.

Zhang N., Zhang Y., Bohu T., Wu S., Bai Z., Zhuang X., 2022. Nitrogen removal characteristics and constraints of an alphaproteobacteria with potential for high nitrogen content heterotrophic nitrification-aerobic denitrification. Microorganisms: 10.

Zhao J. S., Spain J., Thiboutot S., Ampleman G., Greer C., Hawari J., 2004. Phylogeny of cyclic nitramine-degrading psychrophilic bacteria in marine sediment and their potential role in the natural attenuation of explosives. FEMS Microbiol. Ecol., 49: 349–357.

Downloads

Published

29-03-2023

How to Cite

Thi Hong, T., Viet Cuong, P., & Van Phuong, N. (2023). Bacterial diversity in the sediments of three lagoons in Central Vietnam. Academia Journal of Biology, 45(1), 45–54. https://doi.org/10.15625/2615-9023/17902

Issue

Section

Articles