Antimicrobial activity of fungi isolated from Tan Dao mangrove forest in Khanh Hoa
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/16327Keywords:
Antimicrobial activity, culture conditions, mangrove-derived fungi, Penicillium sp.Abstract
Mangrove-derived fungi are the potential source of novel metabolites, comprising unique molecular structures with diverse bioactivities. In this study, 32 fungal strains isolated from the Tan Dao mangrove forest in Khanh Hoa province were investigated for their ability to produce antimicrobial agents using the disc diffusion method. Seventy-eight percent of obtained fungi (25 out of 32 isolates) exhibited antimicrobial activity against at least two test pathogens. Of them, bacteria Bacillus cereus and Streptococcus faecalis were the most susceptive to the antimicrobial activity of all fungal isolates with inhibition zones ranging from 8 to 36 mm, respectively, followed by Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Pseudomonas aeruginosa. There were only three fungal isolates that showed antimicrobial activity towards Candida albicans with the inhibition zone of 8−17 mm diameter. The strain LM.8.1 showing significant activity against all test microorganisms was identified as Penicillium sp. LM.8.1. The effect of culture conditions including pH, salinity, and incubation time on the production of antibacterial compounds of fungus Penicillium sp. LM.8.1 was also studied. The results indicated that fungi isolated from the Tan Dao mangrove forest possess potent antimicrobial properties and should be further investigated.
Downloads
Metrics
References
Abraham S., Basukriadi A., Pawiroharsono S., Sjamsuridzal W., 2015. Insecticidal activity of ethyl acetate extracts from culture filtrates of mangrove fungal endophytes. Mycobiology, 4(2): 137–149.
Ahmad I., Ambarwati N. S. S., Lukman A., Masruhim M. A., Rijai L., Mun’im A., 2018. In vitro Antimicrobial Activity Evaluation of Mangrove Fruit (Sonneratia caseolaris L.) Extract. Pharmacog J., 10(3): 598–601.
Barakat K. M., Gohar Y. M., 2012. Antimicrobial agents produced by marine Aspergillus terreus var. africanus against some virulent fish pathogens. Indian J. Microbiol., 52(3): 366–372.
Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M., 1966. Antibiotics susceptibility test by a standardized single disc method. American Journal of Clinical Pathology, 36(3): 493–496.
Bhavani G. V. L., Muvva V., 2020. Optimization of process parameters for improved production of bioactive metabolites by endophytic fungus Cladosporium cladosporioides isolated from mangrove plant Lumnitzera racemose linn. IJPSR, 11(7): 3260–3267.
Bhimba B. V., Yeswanth S., Naveena B. E., 2011. Characterization of extracellular amylase enzyme produced by Aspergillus flavus MV5 isolated from mangrove sediment. Indian journal of Natural Products and Resources, 2(2): 170–173.
Bugni T. S., Ireland C. M., 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Natural Products Reports, 21(1): 143–163.
Carrol G. C., Petrini O., 1983. Patterns of substrate utilization by some fungal endophytes from coniferous foliage. Mycologia, 75: 53–63.
Chaeprasert S., Piapukiew J., Whalley A. J., Sihanonth P., 2010. Endophytic fungi from mangrove plant species of Thailand: their antimicrobial and anticancer potentials. Bot. Mar., 53: 555–564.
Cheng Z. S., Pan J. H., Tang W. C., Chen Q. J., Lin Y. C., 2009. Biodiversity and biotechnological potential of mangrove associated fungi. Journal of Forestry Research, 20: 63–72.
Chi W. C., Chen W., He C. C., Guo S. Y., Cha H. J., Tsang L. M., Ho T. W., Pang K. L., 2019a. A highly diverse fungal community associated with leaves of the mangrove plant Acanthus ilicifolius var. xiamenensis revealed by isolation and metabarcoding analyses. Peer J. 7: e7293. https://doi.org/10.7717/peerj.7293
Chi W. C., Pang K. L., Chen W. L., Wang G. J., Lee T. H., 2019b. Antimicrobial and iNOS inhibitory activities of the endophytic fungi isolated from the mangrove plant Acanthus ilicifolius var. xiamenensis. Bot. Stud., 60: 4.
Dreyfuss M. M., Chapela I. H., 1994. Fungi as producers of secondary metabolites. In: Gullo VP, ed. Discovery of Natural Products with Therapeutic Potential, Boston: Butterworth-Heinemann: 49–79.
Elsa L. J., Bhimba B. V., 2013. A secondary metabolite with antibacterial activity produced by mangrove foliar fungus Schizophyllum commune. International Journal of Chemical, Environmental & Biological Sciences (IJCEBS) 1(1): 165–168.
Fredricks D. N., Smith C., Meier A., 2005. Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J. Clin. Microbiol., 43: 5122–5128.
Gogoi D. K., Deka Boruah H. P., Saikia R., Bora T. C., 2008. Optimization of process parameters for improved production of bioactive metabolite by a novel endophyticfungus Fusarium sp. DF2 isolated from Taxus wallichiana of North East India. World J. Microbiolv Biotechnol., 24(1): 79–87.
Gunatilaka A. A. L., 2006. Natural products from plant-microorganisms: distribution, structural diversity, bioactivity and implications of their occurrence. J. Nat. Prod., 69(3): 509–526.
Lumbreras-Martínez H., Espinoza C., Fernández J. J., Norte M., Lagunes I., Padrón J. M., López-Portillo J., Trigos Á., 2018. Bioprospecting of fungi with antiproliferative activity from the mangrove sediment of the Tampamachoco coastal lagoon, Veracruz, Mexico. Scientiafungorum, 48: 53–60.
Mabrouk A. M., Kheiralla Z. H., Hamed E. R., Youssry A. A., Abd El Aty A. A., 2011. Physiological studies on some biologically active secondary metabolites from marine-derived fungus Penicillium brevicompactum. Gate2Biotech, 1(1): 1–15.
Mathan S., Subramanian V., Nagamony S., 2013. Optimization and antimicrobial metabolite production from endophytic fungi Aspergillus terreus KC 582297. Euro. J. Exp. Bio., 3(4): 138–144.
Miao L., Kwong T. F., Qian P. Y., 2006. Effect of culture conditions on mycelial growth, antibacterial activity, and metabolite profiles of the marine-derived fungus Arthrinium c.f. saccharicola. Appl. Microbiol. Biotechnol., 72(5): 1063–1073.
Moron L. S., Lim Y. W., dela Cruz T. E. E., 2018. Antimicrobial activities of crude culture extracts from mangrove fungal endophytes collected in Luzon Island, Philippines, Philippine Science Letters. 11: 28–36.
Murugaiyan K., Alaganandham E., Samuel P., Gananaparkasam S. R., 2014. Studies on antimicrobial compounds isolated from mangrove endophytic fungi. World Journal of Pharmacy and Pharmaceutical Sciences, 3(8): 734–744.
Nguyen Xuan Hoa, 2009. Investigate and area statistics, species composition, assessment of the current status of distribution of mangrove ecosystems, seagrass beds, and their role in socio-economic and environmental impacts in coastal waters of Khanh Hoa province. - Proposing sustainable management and use solutions. Report on the environment project of Khanh Hoa province (In Vietnamese).
Nurunnabi T. R., Sabrin F., Sharif D. I., Nahar L., Sohrab M. H., Sarker S. D., Rahman S. M. M., Billah M. M., 2020. Antimicrobial activity of endophytic fungi isolated from the mangrove plant Sonneratia apetala (Buch.-Ham) from the Sundarbans mangrove forest. Advances in Traditional Medicine, 20: 419–425.
Osorio J. A., Crous C. J., De Beer Z. W., Wingfield M. J., Roux J., 2017. Endophytic Botryosphaeriaceae, including five new species, associated with mangrove trees in South Africa. Fungal Biology, 121(4): 361–393.
Pelczar M. J., Chan E. C. S., Krieg N. R., 1993. Microbiology: Concepts and Applications. 5th ed. McGraw-Hill, USA.
Petrini O., 1991. Fungal endophytes of tree leaves. In: Andrews JH, Hirano SS, eds. Microbial Ecology of Leaves, New York: Springer-Verlag.: 179–197.
Rahaman M. S., Siraj M. A., Sultana S., Seidel V., Islam M. A., 2020. Molecular Phylogenetics and Biological Potential of Fungal Endophytes From Plants of the Sundarbans Mangrove. Front. Microbiol., 11: 570855.
Raper K. B., Thom C., 1949. A manual of the Penicillia. Baltimore, William & Wilkins Co.
Saleem M., Ali M. S., Hussain S., Jabbar A., Ashraf M., Lee Y. S., 2007. Marine natural products of fungal origin. Nat. Prod. Rep., 24(5): 1142–52. Doi: 10.1039/b607254m
Salini G., Madhusoodhanan A., Joseph A., Mohan A., Navya R. K., Nair V. V., 2015. Antibacterial and antioxidant potential of endophytic fungi isolated from mangroves. Scholars Research Library, Der Pharmacia Lettre, 7(12): 3–57.
Sibero M. T., Igarashi Y., Radjasa O. K., Sabdono A., Trianto A., Zilda D.S., Wijaya Y.J., 2019. Sponge-associated fungi from a mangrove habitat in Indonesia: species composition, antimicrobial activity, enzyme screening and bioactive profiling. Int. Aquat. Res., 11:173–186.
Silva M. R. O., Almeida A. C., Arruda F. V. F., Gusmão N., 2011. Endophytic fungi from brazilian mangrove plant Laguncularia racemose (L.) Gaertn. (Combretaceae): their antimicrobial potential. In: Mendez-Vilas A. editor. Science against microbial pathogens: communicating current research and technological advances, Badajoz Formatex, 1260–1266.
Sobolevskaya M. P., Leshchenko E. V., Hoai T. P., Denisenko V. A., Dyshlovoy S. A., Kirichuk N. N., Khudyakova Y. V., Kim N. Y., Berdyshev D. V., Pislyagin E. A., Kuzmich A. S., Gerasimenko A. V., Popov R. S., von Amsberg G., Antonov A. S., Afiyatullov S. S., 2016. Pallidopenillines: Polyketides from the alga-derived fungus Penicillium thomii Marie KMM 4675. J. Nat. Prod., 79(12): 3031–3038.
Song Q., Huang Y., Yang H., 2012. Optimization of fermentation conditions for Antibiotic Production by Actinomycetes YJ1 strain against Sclerotinia sclerotiorum. Journal of Agricultural Science, 4(7): 95–102.
Stone J. K., Bacon C. W., White J. F., 2000. An overview of endophytic fungi microbes: Endophytism defined. In: Bacon, C.W. and White, J.F., Eds., Microbial Endophytes, Marcel Dekker, New York: 3–29.
Strobel G. A., 2002. Rainforest endophytes and bioactive products. Crit. Rev. Biotechnol., 22(4): 315–333. Doi: 10.1080/07388550290789531
Strobel G. A., Daisy B., Castillo U., Harper J., 2004. Natural products from endophytic microorganisms. J. Nat. Prod., 67(2): 257–268. Doi: 10.1021/np030397v.
Thongwai N., Kunopakarn J., 2007. Growth Inhibition of Ralstonia solanacearum PT1J by Antagonistic Bacteria Isolated from Soils in the Northern Part of Thailand. Mar. J. Sci., 34: 345–354.
Trinh P. T. H., Ngoc N. T. D., Tien P. Q., Ly B. M., Van T. T. T., 2016. Effect of cultural conditions on antimicrobial activity of marine-derived fungus Penicillium chrysogenum. Journal of Biotechnology, 14(4): 727–733.
Trinh P. T. H., Ngoc N. T. D., Trang V. T. D., Hung L. D., Hoa L. T., Khanh H. H. N., Hang C. T. T., Trung D. T., Khanh C. M., 2020. Effect of fermentation conditions on the ability to produce antibiotics of Penicillium sp. isolated in Nha Trang bay. Vietnam Journal of Marine Science and Technology, 20(4B): 325–332. (in Vietnamese with English summary)
Trinh P. T. H., Ngoc N. T. D., Trang V. T. D., Tien P. Q., Ly B. M., Van T. T. T., Thinh P. D., San P. T., 2017. Effect of culture conditions for antimicrobial activity of marine-derived fungus Aspergillus flocculosus 01NT.1.1.5. Journal of Biotechnology, 15(4): 721–728.
White T. J., Bruns T., Lee S., Taylor J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18: 315–322.