Osteogenesis activity of fractions extracted from Clinacanthus nutans (Burm. F.) Lindau
Author affiliations
DOI:
https://doi.org/10.15625/2615-9023/v42n2.14830Keywords:
Clinacanthus nutans, osteoblast MC3T3-E1, osteogenesis activity.Abstract
Osteogenesis activity of fractions extracted from Clinacanthus nutans was evaluated on an in vitro model using osteoblast MC3T3-E1 cells. The results showed that all fractions, including ethanol (EtOH), n-hexane, ethyl acetate (EtOAc) and butanol (BuOH) were not significantly toxic to the osteoblast cells at the test concentrations of 5, 10, 25, and 50 µg/mL. The EtOH and EtOAc fractions exhibited the highest osteogenesis activity in terms of enhancement of alkaline phosphatase (ALP) and mineralization activity of MC3T3-E1 cells, especially the EtOAc fraction which increased ALP activity up to > 30% and mineralization activity up to > 100%. Thus, the EtOAc fraction shows osteogenesis activity through stimulating activites of the two markers for bone generation including ALP and mineralization in osteoblast cells. The fraction is now under extensive investigation to isolate and fully understand the modes of action of the active compounds.
Downloads
Metrics
References
An J., Yang H., Zhang Q., Liu C., Zhao J., Zhang L., Chen B., 2016. Natural products for treatment of osteoporosis: The effects and mechanisms on promoting osteoblast-mediated bone formation. Life Sci., 147: 46–58
Kamarudin M. N. A., Sarker M. M. R., Kadir H. A., Ming L. C., 2017. Ethnopharmacological uses, phytochemistry, biological activities, and therapeutic applications of Clinacanthus nutans (Burm. f.) Lindau: A comprehensive review. J. Ethnopharmacol., 206: 245−266.
Mai C. W., Yap K. S., Kho M. T., Ismail N. H., Yusoff K., Shaari K., Chin S. Y., Lim E. S., 2016. Mechanisms underlying the anti-inflammatory effects of Clinacanthus nutans Lindau extracts: inhibition of cytokine production and toll-like receptor-4 activation. Front Pharmacol., 7: 7.
Nguyen M. H., Jung W. K., Kim S. K., 2011. Marine algae possess therapeutic potential for Ca-mineralization via osteoblastic differentiation. Adv. Food Nutri Res., pp. 429−441.
Nguyen M. T. H, Qian Z. J., Nguyen V. T., Choi I. W., Heo S. J., Oh C. H., Kang D. H., Kime G. H., Jung W. K., 2013. Tetrameric peptide purified from hydrolysates of biodiesel byproducts of Nannochloropsis oculata induces osteoblastic differentiation through MAPK and Smad pathway on MG-63 and D1 cells. Process Biochem., 48(9): 1387−1394.
Nguyen T. M. H., Qian Z. J., Jung W. K., 2014. Beneficial effect of abalone intestine gastro-intestinal digest on osteoblastic MG-63 cell differentiation. J. Aquatic Food Product Technol., 23(5): 436‒46.
Park M. H., Kim S., Cheon J., Lee J., Kim B. K., Lee S. H., Kong C., Kim Y. Y., Kim M., 2016. Effects of Scytosiphon lomentaria on osteoblastic proliferation and differentiation of MC3T3-E1 cells. Nutri Res. Prac., 10(2): 148−53.
Tabatabaei-Malazy O., Salari P., Khashayar P., Larijani B., 2017. New horizons in treatment of osteoporosis. Daru., 25(1): 2.
Tu S. F., Liu R. H., Cheng Y. B., Hsu Y. M., Du Y. C., El-Shazly M., Wu Y. C., Chang F. R., 2014. Chemical constituents and bioactivities of Clinacanthus nutans aerial parts. Molecules., 19(12): 20382−90.
Sözen T., Özışık L., and Başaran N. C., 2017. An overview and management of osteoporosis. Eur J Rheumatol., 4(1): 46–56.
Lee J. S.; Hong J. M., Jung J. W., Shim J. H., Oh J. H., Cho D. W., 2014. 3D printing of composite tissue with complex shape applied to ear regeneration. Biofabrication., 6(2): 024103.
Tai B. H., Cuong N. M., Huong T. T., Choi E. M., Kim J. A., Kim Y. H., 2009. Chrysoeriol isolated from the leaves of Eurya ciliata stimulates proliferation and differentiation of osteoblastic MC3T3-E1 cells. J. Asian Nat. Prod. Res., 11(9): 817−825.