Effects of non-toxic filamentous cyanobacteria isolated from tri an reservoir on <i>Daphnia</i>





Oscillatoria perornata, chronic toxic effect, cyanobacterial crude extract, microcystin.


This study is aimed to examine whether the presence of non-toxic filamentous cyanobacteria can cause toxic effects on Daphnia magna. Six strains of Oscillatoria perornata were isolated from the Tri An Reservoir and cultured in our laboratory for investigation. The results revealed that all strains were negative with the mcyA moleculer marker. The high performance liquid chromatography (HPLC) results showed that toxin was not detected in their culture products, indicating that these strains corresponded to non-toxin producing strains. However, the results of chronic assay indicated that these non-toxin producing O. perornata conferred toxic effects on the tested animals. The age at first reproduction of D. magna was delayed and the survival of D. manga decreased in proportional with the increase of the density of cells of O. perornata exposed. Significant differences in the life history responses were observed for D. mangna exposed to O. perornata. These results suggested that bioactive secondary metabolites other than microcystins produced by the filamentous cyanobacteria O. perornata may contribute to the toxic effects on Daphnia. Besides cyanotoxins, other secondary metabolites must be taken into account when investigating the toxic effects of cyanobacteria.





Download data is not yet available.


Metrics Loading ...


Brittain S., Mohamed Z. A., Wang J., Lehmann V. K. B., Carmichael W. W., Rinehart K. L., 2000. Isolation and characterization of microcystins from a River Nile strain of Oscillatoria tenuis Agardh ex Gomont. Toxicon, 38(12): 1759–1771.

Chorus I., Bartram J., 1999. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management, Published on behalf of WHO, Spon Press, London.

Dao T. S., Cronberg G., Nimptsch J., Do-Hong L. -C., Wiegand C., 2010. Toxic cyanobacteria from Tri An Reservoir, Vietnam. Nova Hedwigia, 90(3-4): 433–448.

Dao T. S., Tran P. T., Nguyen T. T. L., Nguyen T. S., Bui B. T., 2016. First report on toxicity of the cyanobacterium Planktothrix rubescens isolated from a fish pond in Soc Trang province. Journal of Biology, 38(1): 115–123.

(in Vietnamese with English summary).

Dang Dinh Kim, Duong Thi Thuy, Nguyen Thi Thu Lien, Dao Thanh Son, Le Thi Phuong Quynh, Do Hong Lan Chi, 2014. Toxic cyanobateria in freshwater. Publishing House of Natural Science and Technology, 325 pp. (in Vietnamese).

Desikachary T. V., 1959. Cyanophyta. Indian council of agriculture research, New Delhi.

Duong T. T., Jähnichen S., Le T., Ho C., Hoang T., Nguyen T., Vu T., Dang, D. K., 2014. The occurrence of cyanobacteria and microcystins in the Hoan Kiem Lake and the Nui Coc reservoir (North Vietnam). Environ. Earth Sci., 71(5): 2419–2427.

Ferrão-Filho A. D. S., Kozlowsky-Suzuki B., 2011. Cyanotoxins: Bioaccumulation and effects on aquatic animals. Mar. Drugs, 9(12): 2729–2772.

Ferrão-Filho A. D. S., Soares M. C. S., Magalhães D. F. V., Azevedo S. M. F. O., 2009. Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays. Ecotoxicol. Environ. Saf., 72(2): 479–489.

Figueiredo D. R., Azeiteiro U. M., Esteves S. M., Goncalves F. J., Pereira M. J., 2004. Microcystin-producing blooms - a serious global public health issue. Ecotoxicol. Environ. Saf., 59(2): 151−163.

Harke M. J., Steffen M. M., Gobler C. J., Otten T. G., Wilhelm S. W., Wood S. A., Paerl H. W., 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54: 4–20.

Herrera N. A., Echeverri L.F., Ferrão-Filho A. S., 2015. Effects of phytoplankton extracts containing the toxin microcystin-LR on the survival and reproduction of cladocerans. Toxicon, 95: 38−45.

Hisbergues M., Christiansen G., Rouhiainen L., Sivonen K., Börner T., 2003. PCR-based identification of microcystin-producing genotypes of different cyanobacterial genera. Arch. Microbiol., 180(6): 402–410.

Kardinaal W. E. A., Janse I., Agterveld M. K. V., Meima M., Snoek J., Mur L. R., Huisman J., Zwart G., Visser P. M., 2007. Microcystis genotype succession in relation to microcystin concentrations in freshwater lakes. Aquat. Microb. Ecol., 48(1): 1–12.

Kurmayer R., Juttner F., 1999. Strategies for the co-existence of zooplankton with the toxic cyanobacterium Planktothrix rubescens in Lake Zurich. J. Plankton Res., 21: 659–683.

Kurmayer R., Deng L., Entfellner E., 2016. Role of toxic and bioactive secondary metabolites in colonization and bloom formation by filamentous cyanobacteria Planktothrix. Harmful Algae, 54: 69–86.

Kuster C. J., Von-Eler E., 2013. Interspecific differences between D. pulex and D. magna in tolerance to cyanobacteria with protease inhibitors. PLoS One, 8(5): e62658.

Luu T. T. N., Nguyen T. T., 2008. Planktonic cyanobacteria species composition and seasonal change in La Nga river. Journal of Science and Development, 11(07). (in Vietnamese).

Lürling M., Vander G. E., 2003. Life-history characteristics of Daphnia exposed to dissolved microcystin-LR and to the cyanobacterium Microcystis aeruginosa with and without microcystins. Environ. Toxicol. Chem., 22: 1281–1287.

Martin-Creuzburg D., Von-Elert E., Hoffmann K. H., 2008. Nutritional constraints at the cyanobacteria-Daphnia magna interface: The role of sterols. Limnol. Oceanogr., 53: 456–468.

Nguyen L. T. T., Cronberg G., Larsen J., Moestrup Ø., 2007. Planktic cyanobacteria from freshwater localities in Thua Thien-Hue Province, Vietnam I. Morphology and distribution. Nova Hedwigia, 85: 1–34.

Oberhaus L., Gélinas M., Pinel-Alloul B., Ghadouani A., Humbert J. F., 2007. Grazing of two toxic Planktothrix species by Daphnia pulicaria: potential for bloom control and transfer of microcystins. J. Plankton Res., 29(10): 827–838.

OECD, 2012. OECD guideline for the testing of chemicals, number 2011, Daphnia magna Reproduction Test.

Pham T. L., Dang T. N., 2019. Microcystins in freshwater ecosystems: Occurrence, distribution, and current treatment approaches, in Water and wastewater treatment technologies, edited by Bui X. T., Chiemchaisri C., Fujioka T., Varjani S. pp. 15−36, Springer Singapore, Singapore.

Pham T. L., Utsumi M., 2018. An overview of the accumulation of microcystins in aquatic ecosystems. J. Environ. Manage., 213: 520–529.

Pham T. L., Dao T. S., Tran N. D., Nimptsch J., Wiegand C., Motoo U., 2017. Influence of environmental factors on cyanobacterial biomass and microcystin concentration in the Dau Tieng Reservoir, a tropical eutrophic water body in Vietnam. Ann. Limnol-Int. J. Lim., 53: 89–100.

Pham T. L., Dao T. S., Shimizu K., Lan-Chi D. H., Utsumi M., 2015. Isolation and characterization of microcystin-producing cyanobacteria from Dau Tieng Reservoir, Vietnam. Nova Hedwigia, 101(1‒2): 3–20.

Pineda-Mendoza R. M., Olvera-Ramírez R., Martínez-Jerónimo F., 2012. Microcystins produced by filamentous cyanobacteria in urban lakes. A case study in Mexico City. Hidrobiológica, 22(3): 290–298.

Shams S., Cerasino L., Salmaso N., Dietrich D. R., 2014. Experimental models of microcystin accumulation in Daphnia magna grazing on Planktothrix rubescens: Implications for water management. Aquat. Toxicol., 148 (Supplement C): 9–15.

Sivonen K., 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Apply. Environ. Microbiol., 56: 2658–2666.

Smutná M., Babica P., Jarque S., Hilscherová K., Maršálek B., Haeba M., Bláha L., 2014. Acute, chronic and reproductive toxicity of complex cyanobacterial blooms in Daphnia magna and the role of microcystins. Toxicon, 79(0): 11–18.

Urbach E., Robertson D. L., Chisholm S. W., 1992. Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. Nature, 355(6357): 267–270.




How to Cite

Luu, P. T., Yen, T. T. H., Thai, T. T., & Quang, N. X. (2020). Effects of non-toxic filamentous cyanobacteria isolated from tri an reservoir on <i>Daphnia</i>. Academia Journal of Biology, 42(3). https://doi.org/10.15625/2615-9023/v42n3.13900




Most read articles by the same author(s)