A numerical experiment on hail forecast: Hailstorms on 17 March 2020 in western North Vietnam
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/21329Keywords:
Hail, HSDA, thunderstorm indices, HAILCASTAbstract
This study utilized the Weather Research and Forecast (WRF) model to forecast hail induced by the hailstorms on 17 March 2020 in western North Vietnam, using two microphysical schemes: the Thompson and Morrison schemes. Assessment of the WRF skill in predicting hail coverage and intensity was done for two predicted indices, namely UH (Updraft Helicity) and CTG (Column Total Integrated Graupel). Two predicted variables are DTh (hail diameter given by WRF using the Thompson Hail Algorithm) and DHc (hail diameter given by the HAILCAST submodel in WRF). The predicted hail coverage and intensity were compared with the products given by the Pha Din radar's Hail Size Discrimination Algorithm (HSDA) for three categories: small, large, and giant hail size. Using the Morrison scheme, the WRF model indicates that the hail-coverage forecast skills of UH, CTG, and DHc are highest, with an insignificant difference at the horizontal scale larger than 60 km. However, the DHc variable given by the Morrison scheme provides the most successful forecast for both hail size and coverage compared with the HSDA products and field reports. This is because HAILCAST considers kinematic and microphysical processes to predict maximum hail size at the surface. The predicted hailstorms could occur in environments with moderate convective available potential energy but require robust moisture flux convergence over high mountains.
Downloads
References
Adams-Selin, R.D.A.J. Clark, C.J. Melick, S.R. Dembek, I.L. Jirak, C.L. Ziegler, 2019. Evolution of WRF-HAILCAST during the 2014-16 NOAA/Hazardous Weather Testbed Spring Forecasting Experiments. Wea. Forecasting, 34, 61–79. https://doi.org/10.1175/WAF-D-18-0024.1
Adams-Selin R.D., C.L. Ziegler, 2016. Forecasting Hail Using a One-Dimensional Hail Growth Model within WRF. Mon. Wea. Rev., 144, 4919–4939. https://doi.org/10.1175/MWR-D-16-0027.1
Allen J.T., et al., 2020. Understanding hail in the Earth system. Reviews of Geophysics, 58, e2019RG000665. https://doi.org/10.1029/2019RG000665.
Banacos P.C., D.M. Schultz, 2005. The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives. Wea. Forecasting, 20, 351–366.
Brimelow, J.C.G.W. Reuter, E.R. Poolman, 2002. Modeling Maximum Hail Size in Alberta Thunderstorms. Wea. Forecasting, 17, 1048–1062. https://doi.org/10.1175/1520-0434(2002)017<1048:MMHSIA>2.0.CO;2.
Duy D.M., Truong N.M. 2022. Numerical Reforecast of Severe Hailstorms in Eastern North Vietnam in 24–25/01/2020. J. Hydro-Meteorol., 737(5), 1–14 (in Vietnamese). Doi: 10.36335/VNJHM.2022(737). 1-14.
Gagne D.J.A. McGovern, S.E. Haupt, R.A. Sobash, J.K. Williams, M. Xue, 2017. Storm-Based Probabilistic Hail Forecasting with Machine Learning Applied to Convection-Allowing Ensembles. Wea. Forecasting, 32, 1819–1840. https://doi.org/10.1175/WAF-D-17-0010.1.
Gagne D., A. McGovern, J. Brotzge, J. Correia, 2015. Day-Ahead Hail Prediction Integrating Machine Learning with Storm-Scale Numerical Weather Models. 29(2), 3954–3960, Twenty-Seventh Conference on Innovative Applications of Artificial Intelligence.
Helmus J.J., Collis S.M., 2016. The Python ARM Radar Toolkit (Py-ART), a Library for Working with Weather Radar Data in the Python Programming Language. Journal of Open Research Software, 4(1), e25. https://doi.org/10.5334/jors.119.
Hoat D., H. Quyen, L.N. Hong, V.D. Thanh, N.C., 2023. Building Rainfall Estimation Tool From Radar Reflectivity Using Artificial Intelligence Technique. J. Hydro-Meteorol., 747, 70–80 (in Vietnamese). Doi: 10.36335/VNJHM.2023(747).70-80.
Jewell R., J. Brimelow, 2009. Evaluation of Alberta Hail Growth Model Using Severe Hail Proximity Soundings from the United States. Wea. Forecasting, 24, 1592–1609, https://doi.org/10.1175/2009WAF2222230.1.
John S. Kain, Steven J. Weiss, David R. Bright, Michael E. Baldwin, Jason J. Levit, Gregory W. Carbin, Craig S. Schwartz, Morris L. Weisman, Kelvin K. Droegemeier, Daniel B. Weber, Kevin W. Thomas, 2008. Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-Allowing NWP. Wea. Forecasting, 23, 931–952. https://doi.org/10.1175/WAF2007106.1.
Labriola J., N. Snook, M. Xue, K.W. Thomas, 2019a. Forecasting the 8 May 2017 Severe Hail Storm in Denver, Colorado, at a Convection-Allowing Resolution: Understanding Rimed Ice Treatments in Multimoment Microphysics Schemes and Their Effects on Hail Size Forecasts. Mon. Wea. Rev., 147, 3045–3068. https://doi.org/10.1175/MWR-D-18-0319.1.
Labriola J., N. Snook, Y. Jung, M. Xue, 2019b. Explicit Ensemble Prediction of Hail in 19 May 2013 Oklahoma City Thunderstorms and Analysis of Hail Growth Processes with Several Multimoment Microphysics Schemes. Mon. Wea. Rev., 147, 1193–1213. https://doi.org/10.1175/MWR-D-18-0266.1.
Labriola J., N. Snook, Y. Jung, M. Xue, 2020. Evaluating Ensemble Kalman Filter Analyses of Severe Hailstorms on 8 May 2017 in Colorado: Effects of State Variable Updating and Multimoment Microphysics Schemes on State Variable Cross Covariances. Mon. Wea. Rev., 148, 2365–2389. https://doi.org/10.1175/MWR-D-19-0300.1.
Labriola J., N. Snook, Y. Jung, B. Putnam, M. Xue, 2017. Ensemble Hail Prediction for the Storms of 10 May 2010 in South-Central Oklahoma Using Single- and Double-Moment Microphysical Schemes. Mon. Wea. Rev., 145, 4911–4936. https://doi.org/10.1175/MWR-D-17-0039.1.
Li Z., P. Zuidema, P. Zhu, H. Morrison, 2015. The Sensitivity of Simulated Shallow Cumulus Convection and Cold Pools to Microphysics. J. Atmos. Sci., 72, 3340–3355. https://doi.org/10.1175/JAS-D-14-0099.1.
Luo L., M. Xue, K. Zhu, B. Zhou, 2017. Explicit prediction of hail using multimoment microphysics schemes for a hailstorm of 19 March 2014 in eastern China, J. Geophys. Res. Atmos., 122, 7560–7581. Doi: 10.1002/2017JD026747.
Luo L., M. Xue, K. Zhu, B. Zhou, 2018: Explicit Prediction of Hail in a Long-Lasting Multicellular Convective System in Eastern China Using Multimoment Microphysics Schemes. J. Atmos. Sci., 75, 3115–3137. https://doi.org/10.1175/JAS-D-17-0302.1.
Malecic B., M.T. Prtenjak, K. Horvath, D. Jelic, P.M. Jurkovic, K. Corko, N.S. Mahovic, 2022. Performance of HAILCAST and the Lightning Potential Index in simulating hailstorms in Croatia in a mesoscale model - Sensitivity to the PBL and microphysics parameterization schemes. Atmospheric Research, 272, 106143.
Melcón P. Merino, A. Sánchez, J.L. López L., García-Ortega E., 2017. Spatial Patterns of Thermodynamic Conditions of Hailstorms in Southwestern France. Atmospheric Research, 189(1), 111–126. https://doi.org/10.1016/j.atmosres.2017.01.011.
Minh N.H., Dung P.T., Van V.T., T. Hai, D.V. Khiem, MV, 2023. Accuracy Improvement of Flood Forecast by Blending Radar-based Rainfall Prediction with Numerical Weather Prediction Rainfall Product. J. Hydro-Meteorol, 751(7), 91–101 (in Vietnamese). Doi: 10.36335/VNJHM.2023(751), 91–101.
Mittermaier M.P., 2021. A "Meta" Analysis of the Fractions Skill Score: The Limiting Case and Implications for Aggregation. Mon. Wea. Rev., 149, 3491–3504. https://doi.org/10.1175/MWR-D-18-0106.1.
Morrison H., J.A. Curry, V.I. Khvorostyanov, 2005. A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. J. Atmos. Sci. 62, 1665–1677, https://doi.org/10.1175/JAS3446.1.
NOAA Global Forecast System (GFS). https://registry.opendata.aws/noaa-gfs-bdp-pds accessed on 15 August, 2023.
Kiel L. Ortega, John M. Krause, Alexander V. Ryzhkov, 2016. Polarimetric Radar Characteristics of Melting Hail. Part III: Validation of the Algorithm for Hail Size Discrimination. J. Appl. Meteor. Climatol., 55, 829–848. https://doi.org/10.1175/JAMC-D-15-0203.1.
Hyang Suk Park, A.V. Ryzhkov, D.S. Zrnić, Kyung-Eak Kim, 2009. The Hydrometeor Classification Algorithm for the Polarimetric WSR-88D: Description and Application to an MCS. Wea. Forecasting, 24, 730–748. https://doi.org/10.1175/2008WAF2222205.1.
Powers J.G., et al., 2017. The Weather Research and Forecasting Model: Overview, System Efforts, and Future Directions. Bull. Amer. Meteor. Soc., 98, 1717–1737, https://doi.org/10.1175/BAMS-D-15-00308.1.
Quyet L.D., Nghi V.V., Giam N.M., 2011. Detecting Thunderstorms using Doppler Weather Radar. J. Hydro-Meteorol, 31–37 (in Vietnamese). https://vjol.info.vn/index.php/TCKHTV/article/view/60493/50765 accessed on 15 August, 2023.
Roberts N.M., Lean H.W., 2008. Scale-Selective Verification of Rainfall Accumulations from High-Resolution Forecasts of Convective Events. Monthly Weather Review, 136(1), 78–97. https://doi.org/10.1175/2007MWR2123.1.
Alexander V. Ryzhkov, Matthew R. Kumjian, Scott M. Ganson, Pengfei Zhang, 2013. Polarimetric Radar Characteristics of Melting Hail. Part II: Practical Implications. J. Appl. Meteor. Climatol., 52, 2871–2886. https://doi.org/10.1175/JAMC-D-13-074.1.
Skamarock W.C., et al., 2021. A Description of the Advanced Research WRF Model Version 4.3 (No. NCAR/TN-556+STR). Doi: 10.5065/1dfh-6p97.
Snook N., Jung Y., Brotzge J., Putnam B., Xue M., 2016. Prediction and Ensemble Forecast Verification of Hail in the Supercell Storms of 20 May 2013. Wea. Forecasting, 31(3), 811–825. https://doi.org/10.1175/WAF-D-15-0152.1.
Sobash R.A., Romine G.S., Schwartz C.S., 2020. A Comparison of Neural-Network and Surrogate-Severe Probabilistic Convective Hazard Guidance Derived from a Convection-Allowing Model. Wea. Forecasting, 35(5), 1981–2000. https://doi.org/10.1175/WAF-D-20-0036.1.
Stull R., 2017. Practical Meteorology: An Algebra-based Survey of Atmospheric Science -version 1.02b. Univ. of British Columbia, 940p. ISBN 978-0-88865-283-6.
Thang N.V., Kien T.B., Thuc T.D., Thang V.V., 2020. An Investigation into the Causes of the Hailstorm over the Nothern Viet Nam from 24th to 25th January 2020. Journal of Climate Change Science, 13, 1–10 (in Vietnamese). https://vjol.info.vn/index.php/TCKHBDKH/article/view/57843/48258 accessed on 15 August, 2023.
Thanh C., Nhu Quy N., Van Khiem M., 2018. Assessing the Rain Estimate from the Feflectivity of Nha Be Radar. VNU Journal Of Science: Earth And Environmental Sciences, 34(1S), 10–17 (in Vietnamese). Doi: 10.25073/2588-1094/vnuees.4330.
Thompson G., Field P.R., Rasmussen R.M., Hall W.D. 2008. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Wea. Rev., 136(12), 5095–5115. https://doi.org/10.1175/2008MWR2387.1.
Ulbrich C.W., 1983. Natural Variations in the Analytical Form of the Raindrop Size Distribution. J. Appl. Meteor. Climatol, 22(10), 1764–1775. https://doi.org/10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2.
Van Weverberg K., et al., 2013. The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific. J. Atmos. Sci., 70, 1104–1128. https://doi.org/10.1175/JAS-D-12-0104.1.
Vietnam Meteorological and Hydrological Administration. http://vmha.gov.vn/public/index.php/tin-tuc-khcn-120/dien-bien-mua-dong-lo%3Fc-mua-da-ngay-17-18-va-21-den-23-thang-3-nam-2020-tren-khu-vuc-cac-tinh-bac-bo-va-bac-trung-bo-8469.html accessed on 15 August, 2023.
Wu W., W. Huang, L. Deng, C. Wu, 2022. Investigation of Maximum Hail-Size Forecasting Using Bulk Microphysics Schemes. Mon. Wea. Rev., 150, 2503–2525, https://doi.org/10.1175/MWR-D-21-0312.1.
Zomeren J.V., A.V. Delden, 2007. Vertically integrated moisture flux convergence as a predictor of thunderstorms, Atmospheric Research, 83(2), 435–445.