Comparison of Synthetic Aperture Radar Sentinel-1 and ALOS-2 observations for lake monitoring

Binh Pham Duc
Author affiliations

Authors

  • Binh Pham Duc REMOSAT, University of Science and Technology of Hanoi, VAST, Hanoi, Vietnam

DOI:

https://doi.org/10.15625/2615-9783/20639

Keywords:

Lake monitoring; ALOS-2; Sentinel-1; Sentinel-2; Tri An reservoir

Abstract

This work investigates the efficacy of L-band and C-band Synthetic Aperture Radar (SAR) sensors onboard ALOS-2 and Sentinel-1 satellites, as compared to optical sensors onboard Sentinel-2 satellite, for mapping open water of the Tri An reservoir, one of the largest artificial reservoirs in South Vietnam, during the 2016-2023 period. The Google Earth Engine (GEE) was the primary computing platform to pre-process all satellite observations. The Otsu threshold algorithm was employed to generate water/non-water maps derived from the VH- and HH-polarized backscatter coefficient data acquired by Sentinel-1 and ALOS-2 satellites and from the Modified Normalized Difference Water Index (MNDWI) data acquired by Sentinel-2 satellite, respectively. The findings reveal the stability of Tri An reservoir’s surface water extent from 2017 to 2022, followed by a significant decline of nearly 70% during the dry season of 2023 to approximately 100 km2. This substantial decrease can be explained by the impact of a robust El Niño phase occurring in the region simultaneously. Overall, there is a high consistency between results derived from SAR and optical sensors, but the correlation between Sentinel-1 and Sentinel-2 (R = 0.9774) was higher than that between ALOS-2 and Sentinel-2 (R = 0.9145). During the drought period, both C-band and L-band SAR sensors overestimate the reservoir’s surface water extent due to the similarity in their backscatter coefficient between water and dry flat soil surfaces. This misclassification is more pronounced in ALOS-2 data than Sentinel-1 data, suggesting that the C-band sensor is more suitable than the L-band sensor for mapping the lake’s open water areas.

Downloads

Download data is not yet available.

References

Abrams M., Crippen R., Fujisada H., 2020. ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). In Remote Sensing, 12, 7. https://doi.org/10.3390/rs12071156.

Asfaw W., Haile A.T., Rientjes T., 2020. Combining multisource satellite data to estimate storage variation of a lake in the Rift Valley Basin, Ethiopia. International Journal of Applied Earth Observation and Geoinformation, 89, 102095. https://doi.org/10.1016/j.jag.2020.102095.

Chen Z., Banks S., Behnamian A., White L., Montpetit B., Pasher J., Duffe J., 2020. Characterizing the Great Lakes Coastal Wetlands with InSAR Observations from X-, C-, and L-Band Sensors. Canadian Journal of Remote Sensing, 46(6), 765–783. https://doi.org/10.1080/07038992.2020.1867974.

Downing J., 2010. Emerging global role of small lakes and ponds: Little things mean a lot. Limnetica, 29, 9–24. https://doi.org/10.23818/limn.29.02.

Downing J.A., Prairie Y.T., Cole J.J., Duarte C.M., Tranvik L.J., Striegl R.G., McDowell W.H., Kortelainen P., Caraco N.F., Melack J.M., Middelburg J.J., 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology and Oceanography, 51(5), 2388–2397. https://doi.org/10.4319/lo.2006.51.5.2388.

ESA, 2016. SAR Basics with the Sentinel-1 Toolbox in SNAP Tutorial. https://step.esa.int/main/doc/tutorials/sentinel-1-toolbox-tutorials/.

ESA, 2022. Mission ends for Copernicus Sentinel-1B satellite. https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-1/Mission_ends_for_Copernicus_Sentinel-1B_satellite.

Feyisa G.L., Meilby H., Fensholt R., Proud S.R., 2014. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment, 140, 23–35. https://doi.org/10.1016/j.rse.2013.08.029.

Gao B., 1996. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 58(3), 257–266. https://doi.org/10.1016/S0034-4257(96)00067-3.

Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R., 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031.

Gulácsi A., Kovács F., 2020. Sentinel-1-Imagery-Based High-Resolution Water Cover Detection on Wetlands, Aided by Google Earth Engine. Remote Sensing, 12(10). https://doi.org/10.3390/rs12101614.

Henry J.-B., Chastanet P., Fellah K., Desnos Y.-L., 2006. Envisat multi-polarized {ASAR} data for flood mapping. International Journal of

Remote Sensing, 27(10), 1921–1929. https://doi.org/10.1080/01431160500486724.

Hoang-Cong H., Ngo-Duc T., Nguyen-Thi T., Trinh-Tuan L., Jing Xiang C., Tangang F., Jerasorn S., Phan-Van T., 2022. A high-resolution climate experiment over part of Vietnam and the Lower Mekong Basin: performance evaluation and projection for rainfall. Vietnam J. Earth Sci., 44(1), 92–108. https://doi.org/10.15625/2615-9783/16942.

Huth J., Gessner U., Klein I., Yesou H., Lai X., Oppelt N., Kuenzer C., 2020. Analyzing Water Dynamics Based on Sentinel-1 Time Series a Study for Dongting Lake Wetlands in China. In Remote Sensing, 12, 11. https://doi.org/10.3390/rs12111761.

JAXA, 2023a. ALOS-2 PALSAR-2 ScanSAR Products. https://www.eorc.jaxa.jp/ALOS/en/dataset/palsar2_l22_e.htm.

JAXA, 2023b. ALOS-2 Project / ALOS-2 Overview. https://www.eorc.jaxa.jp/ALOS-2/en/about/overview.htm.

Ji X., Li Y., Luo X., He D., 2018. Changes in the Lake Area of Tonle Sap: Possible Linkage to Runoff Alterations in the Lancang River? Remote Sensing, 10(6). https://doi.org/10.3390/rs10060866.

Johnson M.S., Matthews E., Du J., Genovese V., Bastviken D., 2022. Methane Emission From Global Lakes: New Spatiotemporal Data and Observation-Driven Modeling of Methane Dynamics Indicates Lower Emissions. Journal of Geophysical Research: Biogeosciences, 127(7), e2022JG006793. https://doi.org/https://doi.org/10.1029/2022JG006793.

Lakshmi V., Le M.-H., Goffin B.D., Besnier J., Pham H.T., Do H.-X., Fang B., Mohammed I., Bolten J.D., 2023. Regional analysis of the 2015–16 Lower Mekong River basin drought using NASA satellite observations. Journal of Hydrology: Regional Studies, 46, 101362. https://doi.org/10.1016/j.ejrh.2023.101362.

Li J., Ma R., Cao Z., Xue K., Xiong J., Hu M., Feng X., 2022. Satellite Detection of Surface Water Extent: A Review of Methodology. In Water, 14, 7. https://doi.org/10.3390/w14071148.

Li J., Wang J., Yang L., Ye H., 2022. Spatiotemporal change analysis of long time series inland water in Sri Lanka based on remote sensing cloud computing. Scientific Reports, 12(1), 766. https://doi.org/10.1038/s41598-021-04754-y.

Liao A., Chen L., Chen J., He C., Cao X., Chen J., Peng S., Sun F., Gong P., 2014. High-resolution remote sensing mapping of global land water. Science China Earth Sciences, 57(10), 2305–2316. https://doi.org/10.1007/s11430-014-4918-0.

McFeeters S.K., 1996. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17(7), 1425–1432. https://doi.org/10.1080/01431169608948714.

Ngo-Duc T., 2023. Rainfall extremes in Northern Vietnam: a comprehensive analysis of patterns and trends. Vietnam J. Earth Sci., 45(2), 183–198. https://doi.org/10.15625/2615-9783/18284.

Nguyen H.-Q., Ha N.-T., Pham T.-L., 2020. Inland harmful cyanobacterial bloom prediction in the eutrophic Tri An Reservoir using satellite band ratio and machine learning approaches. Environmental Science and Pollution Research, 27(9), 9135–9151. https://doi.org/10.1007/s11356-019-07519-3.

Otsu N., 1979. A Threshold Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 62–66. https://doi.org/10.1109/TSMC.1979.4310076.

Palmer S.C.J., Kutser T., Hunter P.D., 2015. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sensing of Environment, 157, 1–8. https://doi.org/10.1016/j.rse.2014.09.021.

Pekel J.-F., Cottam A., Gorelick N., Belward A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 1–19. https://doi.org/10.1038/nature20584.

Pham-Duc B., 2023. Comparison of multi-source satellite remote sensing observations for monitoring the variations of small lakes: a case study of Dai Lai Lake (Vietnam). Journal of Water and Climate Change, jwc2023505. https://doi.org/10.2166/wcc.2023.505.

Pham-Duc B., Frappart F., Tran-Anh Q., Si S.T., Phan H., Quoc S.N., Le A.P., Viet B. Do, 2022. Monitoring Lake Volume Variation from Space Using Satellite Observations: A Case Study in Thac Mo Reservoir (Vietnam). Remote Sensing, 14(16). https://doi.org/10.3390/rs14164023.

Pham-Duc B., Nguyen H., Phan H., Tran-Anh Q., 2023. Trends and applications of google earth engine in remote sensing and earth science research: a bibliometric analysis using scopus database. Earth Science Informatics, 16(3), 2355–2371. https://doi.org/10.1007/s12145-023-01035-2.

Pham-Duc B., Tran Anh Q., Tong Si S., 2023. Monitoring monthly variation of Tonle Sap Lake water volume using Sentinel-1 imagery and satellite altimetry data. Vietnam J. Earth Sci., 45(4), 479–496. https://doi.org/10.15625/2615-9783/18897.

Pham Duc B., Tong Si S., 2021. Monitoring spatial-temporal dynamics of small lakes based on SAR Sentinel-1 observations: a case study over Nui Coc Lake (Vietnam). Vietnam J. Earth Sci., 44(1), 1–17. https://doi.org/10.15625/2615-9783/16315.

Pickens A.H., Hansen M.C., Hancher M., Stehman S.V, Tyukavina A., Potapov P., Marroquin B., Sherani Z., 2020. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sensing of Environment, 243, 111792. https://doi.org/10.1016/j.rse.2020.111792.

Ramsey III E., Rangoonwala A., Bannister T., 2013. Coastal Flood Inundation Monitoring with Satellite C-band and L-band Synthetic Aperture Radar Data. JAWRA Journal of the American Water Resources Association, 49(6), 1239–1260. https://doi.org/10.1111/jawr.12082.

Raymond P.A., Hartmann J., Lauerwald R., Sobek S., McDonald C., Hoover M., Butman D., Striegl R., Mayorga E., Humborg C., Kortelainen P., Dürr H., Meybeck M., Ciais P., Guth P., 2013. Global carbon dioxide emissions from inland waters. Nature, 503(7476), 355–359. https://doi.org/10.1038/nature12760.

Shanker Srivastava H., Patel P., 2022. Chapter 22 - Radar remote sensing of soil moisture: fundamentals, challenges & way-out. In P.K. Srivastava, D.K. Gupta, T. Islam, D. Han, & R.B.T.-R.R.S. Prasad (Eds.), Earth Observation. Elsevier, 405–445. https://doi.org/10.1016/B978-0-12-823457-0.00022-7.

Small D., 2011. Flattening Gamma: Radiometric Terrain Correction for SAR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 49(8), 3081–3093. https://doi.org/10.1109/TGRS.2011.2120616.

Tranvik L.J., Downing J.A., Cotner J.B., Loiselle S.A., Striegl R.G., Ballatore T.J., Dillon P., Finlay K., Fortino K., Knoll L.B., Kortelainen P.L., Kutser T., Larsen S., Laurion I., Leech D.M., McCallister S.L., McKnight D.M., Melack J.M., Overholt E., Weyhenmeyer G.A., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography, 54(6part2), 2298–2314. https://doi.org/10.4319/lo.2009.54.6_part_2.2298.

Verpoorter C., Kutser T., Seekell D.A., Tranvik L.J., 2014. A global inventory of lakes based on high-resolution satellite imagery. Geophysical Research Letters, 41(18), 6396–6402. https://doi.org/10.1002/2014GL060641.

Wakabayashi H., Nishito Y., 2015. Monitoring of tundra lakes with C-band and L-band SAR data. 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), 2076–2079. https://doi.org/10.1109/IGARSS.2015.7326210.

Williamson C.E., Saros J.E., Vincent W.F., Smol J.P., 2009. Lakes and Reservoirs as Sentinels, Integrators, and Regulators of Climate Change. Limnology and Oceanography, 54(6), 2273–2282. http://www.jstor.org/stable/20622831.

Woolway R.I., Kraemer B.M., Lenters J.D., Merchant C.J., O’Reilly C.M., Sharma S., 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388–403. https://doi.org/10.1038/s43017-020-0067-5.

Xiong Q., Li G., Yao X., Zhang X., 2023. SAR-to-Optical Image Translation and Cloud Removal Based on Conditional Generative Adversarial Networks: Literature Survey, Taxonomy, Evaluation Indicators, Limits and Future Directions. Remote Sensing, 15(4). https://doi.org/10.3390/rs15041137.

Xu H., 2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179.

Yao F., Livneh B., Rajagopalan B., Wang J., Crétaux J.-F., Wada Y., Berge-Nguyen M., 2023. Satellites reveal widespread decline in global lake water storage. Science, 380(6646), 743–749. https://doi.org/10.1126/science.abo2812.

Zan C., Liu T., Huang Y., Bao A., Yan Y., Ling Y., Wang Z., Duan Y., 2022. Spatial and temporal variation and driving factors of wetland in the Amu Darya River Delta, Central Asia. Ecological Indicators, 139, 108898. https://doi.org/10.1016/j.ecolind.2022.108898.

Zhang Y., Pan M., Wood E.F., 2016. On Creating Global Gridded Terrestrial Water Budget Estimates from Satellite Remote Sensing. Surveys in Geophysics, 37(2), 249–268. https://doi.org/10.1007/s10712-015-9354-y.

Zhuang Q., Guo M., Melack J.M., Lan X., Tan Z., Oh Y., Leung L.R., 2023. Current and Future Global Lake Methane Emissions: A Process-Based Modeling Analysis. Journal of Geophysical Research: Biogeosciences, 128(3), e2022JG007137. https://doi.org/https://doi.org/10.1029/2022JG007137.

Downloads

Published

22-04-2024

How to Cite

Pham Duc, B. (2024). Comparison of Synthetic Aperture Radar Sentinel-1 and ALOS-2 observations for lake monitoring. Vietnam Journal of Earth Sciences, 46(3), 322–338. https://doi.org/10.15625/2615-9783/20639

Issue

Section

Articles