Modelling spatial patterns of forest fire occurrence in the Northwestern region of Vietnam

Trang Thanh Pham, Thuan Chu, Bao Quang Tran
Author affiliations

Authors

  • Trang Thanh Pham Faculty of Forest Resources Environmental Management, Vietnam National University of Forestry, Xuan Mai, Chuong My, Hanoi, 100000 Vietnam
  • Thuan Chu Department of Geography and Planning, University of Saskatchewan, Saskatoon, SK S7N5C8, Canada
  • Bao Quang Tran Department of Forestry, Ministry of Agriculture and Rural Development, Hanoi, 100000 Vietnam

DOI:

https://doi.org/10.15625/2615-9783/20366

Keywords:

Forest fire, machine learning, MaxEnt, remote sensing, Southeast Asia, tropical forest

Abstract

Forest fires present a significant threat to the tropical forest ecosystem in the northwestern region of Vietnam. Our study aimed to assess the impacts of environmental factors on forest fire occurrence and to map forest fire probability for the whole region. The forest fire occurrence data over the period 2003–2016, environmental factors (climate, fuel condition, topography, and human activity), and the MaxEnt approach were used for this study. The MaxEnt model performed better than the random model (AUC>0.88). Climatic factors (especially climatic seasonality: annual temperature range (bio_07), isothermality (bio_03), and precipitation of warmest quarter (bio_18)) had the highest contribution to the model, followed by population density and elevation. In contrast, fuel condition (Land cover type) had a small contribution to the model. While medium, high, and very high probabilities of forest fire occurred at medium to high elevations (e.g., Dien Bien, Son La, and Lai Chau provinces) throughout southern to northern and western areas, very low and low probability concentrated southeastern areas at lower elevations (mainly in Hoa Bình province). Our results may be helpful references for fire managers and policymakers to establish more effective fire management strategies for the region's forest.

Downloads

Download data is not yet available.

References

Andela N., Morton D.C., Giglio L., Paugam R., Chen Y., Hantson S., van der Werf G.R., Randerson J.T., 2019. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth System Science Data, 11(2), 529–552. https://doi.org/10.5194/essd-11-529-2019.

Andrew M.E., Fox E., 2020. Modelling species distributions in dynamic landscapes: The importance of the temporal dimension. Journal of Biogeography, 47(7), 1510–1529. Doi: 10.1111/jbi.13832.

Averyanov L.V., Loc P.K., Hiep N.T., Harder D.K., 2003. Phytogeographic review of Vietnam and adjacent areas of Eastern Indochina. Komarovia, 3, 1–83.

Barker D.H., Vanier C., Naumburg E., Charlet T.N., Nielsen K.M., Newingham B.A., Smith S.D., 2006. Enhanced monsoon precipitation and nitrogen deposition affect leaf traits and photosynthesis differently in spring and summer in the desert shrub Larrea tridentata. New Phytologist, 169(4), 799-808. Doi: 10.1111/j.1469-8137.2006.01628.x.

Bekar I., Tavşanoğlu Ç., Pezzatti G.B., Vacik H., Pausas J.G., Bugmann H., Petter G., 2020. Cross-regional modelling of fire occurrence in the Alps and the Mediterranean Basin. International Journal of Wildland Fire, 29(8), 712–722. https://doi.org/10.1071/WF19158.

Bennett M., Fitzgerald S.A., Parker B., Main M.L., Perleberg A., Schnepf C., Mahoney R.L., 2010. Reducing fire risk on your forest property. Pacific Northwest Extension Publication, Oregon State University and University of Idaho and Washington State University. Available at: https://ir.library.oregonstate.edu/concern/administrative_report_or_publications/ws859f89n?locale=enandpage=2. Accessed on 17 January 2023.

Bradstock R.A., 2010. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography, 19(2), 145–158. Doi: 10.1111/j.1466-8238.2009.00512.x.

Burapapol K., Nagasawa R., 2016. Mapping wildfire fuel load distribution using Landsat 8 Operational Land Imager (OLI) data in Sri Lanna National Park, northern Thailand. Journal of the Japanese Agricultural Systems Society, 32(4), 133–145. Doi: 10.14962/jass.32.4_133.

Camp A., Oliver C., Hessburg P., Everett R., 1997. Predicting late-successional fire refugia pre-dating European settlement in the Wenatchee Mountains. Forest Ecology and Management, 95(1), 63–77. Doi: 10.1016/S0378-1127(97)00006-6.

Castro R., Chuvieco E., 1998. Modeling forest fire danger from geographic information systems. Geocarto International, 13(1), 15–23. https://doi.org/10.1080/10106049809354624.

Center for International Earth Science Information Network Columbia University, 2018. Documentation for the gridded population of the world, version 4 (GPWv4), revision 11 data sets. Palisades NY: NASA Socioeconomic Data and Applications Center (SEDAC. Available at: https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-rev11. Accessed on 26 February 2023.

Chang Y., Zhu Z., Bu R., Chen H., Feng Y., Li Y., Hu Y., Wang Z., 2013. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecology, 28(10), 1989–2004. https://doi.org/10.1007/s10980-013-9935-4.

Chuvieco E., 2003. Wildland fire danger estimation and mapping: the role of remote sensing data. World Scientific, Singapore, 4, 280.

Chuvieco E., Giglio L., Justice C., 2008. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology, 14(7), 1488–1502. https://doi.org/10.1111/j.1365-2486.2008.01585.x.

Cochard R., Ngo D.T., Waeber P.O., Kull C.A., 2016. Extent and causes of forest cover changes in Vietnam's provinces 1993–2013: a review and analysis of official data. Environmental reviews, 25(2), 199–217. https://doi.org/10.1139/er-2016-0050.

Cochrane M.A., 2003. Fire science for rainforests. Nature, 421(6926), 913–919. https://doi.org/10.1038/nature01437.

Cochrane M.A., Schulze M.D., 1999. Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon: Effects on Forest Structure, Biomass, and Species Composition. Biotropica, 31(1), 2–16. https://doi.org/10.1111/j.1744-7429.1999.tb00112.x.

Cotton J., 1999. The "haze" over Southeast Asia: Challenging the ASEAN mode of regional engagement. Pacific Affairs, 331–351. https://doi.org/10.2307/2672225.

Cruz M.G., Alexander M.E., 2017. Modelling the rate of fire spread and uncertainty associated with the onset and propagation of crown fires in conifer forest stands. International journal of wildland fire, 26(5), 413–426. https://doi.org/10.1071/WF16218.

Dieu B.T., Thanh B.Q., Phi N.Q., Pradhan B., Nampak H., Trinh P.T., 2017. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agricultural and Forest Meteorology, 233, 32–44. https://doi.org/10.1016/j.agrformet.2016.11.002.

Dieu B.T., Thoa L.T.K., Van N.K., Duc L.H., Revhaug I., 2016. Tropical forest fire susceptibility mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, using GIS-based kernel logistic regression. Remote Sensing, 8(4), 347. https://doi.org/10.3390/rs8040347.

Elith J., 2000. Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants. In: Ferson, S., and Burgman, M. (Eds.). Quantitative methods for conservation biology. Springer, New York, 4, 39–58.

Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwich J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz G., Nakamura M., Nakazawa Y., Overton J.McC.M., Peterson A.T., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29(2), 129–151. Doi: 10.1111/j.2006.0906-7590.04596.x.

Enright N.J., 2011. Fire and ecosystem function. In: Millington, A.A., Blumler, M., and Schickhoff, U. (Eds.). The SAGE Handbook of Biogeography. Sage, Singapore, p.212.

ESRI, 2019. ArcGIS Desktop: ArcGIS Pro. Environmental Systems Research Institute, Redlands, CA.

Fang L., Yang J., Zu J., Li G., Zhang J., 2015. Quantifying influences and relative importance of fire weather, topography, and vegetation on fire size and fire severity in a Chinese boreal forest landscape. Forest Ecology and Management, 356, 2–12. https://doi.org/10.1016/j.foreco.2015.01.011.

Fick S.E., Hijmans R.J., 2017. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.

Fielding A.H., Bell J.F., 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental conservation, 38–49. Doi: www.jstor.org/stable/44519240.

Flannigan M., Cantin A.S., de Groot W.J., Wotton M., Newbery A., Gowman L.M., 2013. Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294, 54–61. Doi: 10.1016/j.foreco.2012.10.022.

Food and Agricultural Organization of The United Nations, 2009. Vietnam Forestry Outlook Study. Bangkok: Food and Agricultural Organization of The United Nations Regional office for Asia and the Pacific.

Forest Protection Department, 2020. Annually Report on Forest Fire and Destruction. Unpubplished. General statistics office of Vietnam, 2011. Statistical yearbook of Vietnam. Available at: https://www.gso.gov.vn/wp-content/uploads/2021/07/Sach-NGTK-2020Banquyen.pdf. Accessed on 24 February 2023.

Goldammer J.G., Seibert B., 1990. The impact of droughts and forest fires on tropical lowland rain forest of East Kalimantan. In: Goldammer, J.G. (Eds.). Fire in the tropical biota. Springer, 11–31.

Guo F., Su Z., Wang G., Sun L., Lin F., Liu A., 2016a. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Applied Geography, 66, 12–21. https://doi.org/10.1016/j.apgeog.2015.11.014.

Guo F., Wang G., Su Z., Liang H., Wang W., Lin F., Liu A., 2016b. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. International Journal of Wildland fire, 25(5), 505–519. https://doi.org/10.1071/WF15121.

Herawati H., Santoso H., 2011. Tropical forest susceptibility to and risk of fire under changing climate: A review of fire nature, policy and institutions in Indonesia. Forest Policy and Economics, 13(4), 227–233. https://doi.org/10.1016/j.forpol.2011.02.006.

Hoang M.H., 2007. Status of Forest Fire Management and Control in Vietnam [Paper presentation]. In GEOSS Symposium on Integrated Observation for Sustainable Development in the Asia-Pacific Region', 11-12 January 2007, Tokyo, Japan. Group on Earth Observations (GEO). Available at https://www.restec.or.jp/geoss_ap1/materials/PDF/ForestFire/2day/2day_8_Hien.pdf. Accessed on 24 January 2022.

Holden Z.A., Morgan P., Evans J.S., 2009. A predictive model of burn severity based on 20-year satellite-inferred burn severity data in a large southwestern U.S. wilderness area. Forest Ecology and Management, 258(11), 2399–2406. https://doi.org/10.1016/j.foreco.2009.08.017.

Holsinger L., Parks S.A., Miller C., 2016. Weather, fuels, and topography impede wildland fire spread in western U.S. landscapes. Forest Ecology and Management, 380, 59–69. https://doi.org/10.1016/j.foreco.2016.08.035.

Hong H., Tsangaratos P., Ilia I., Liu J., Zhu A.X., Xu C., 2018. Applying genetic algorithms to set the optimal combination of forest fire related variables and model forest fire susceptibility based on data mining models. The case of Dayu County, China. Science of the total Environment, 630, 1044–1056. https://doi.org/10.1016/j.scitotenv.2018.02.278.

Hoyos N., Correa-Metrio A., Sisa A., Ramos-Fabiel M.A., Espinosa J.M., Restrepo J.C., Escobar J., 2017. The environmental envelope of fires in the Colombian Caribbean. Applied Geography, 84, 42–54. https://doi.org/10.1016/j.apgeog.2017.05.001.

Jarvis A., Reuter H.I., Nelson A., Guevara E., 2008. Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT). Available at https://srtm.csi.cgiar.org. Accessed on 8 January 2022.

Juárez-Orozco S.M., Siebe C., Fernández y Fernández D., 2017. Causes and Effects of Forest Fires in Tropical Rainforests: A Bibliometric Approach. Tropical Conservation Science, 10, 1–14. Doi: 10.1177/1940082917737207.

Knorr W., Kaminski T., Arneth A., Weber U., 2014. Impact of human population density on fire frequency at the global scale. Biogeosciences, 11(4), 1085–1102. https://doi.org/10.5194/bg-11-1085-2014.

Koutsias N., Martínez-Fernández J., Allgöwer B., 2010. Do factors causing wildfires vary in space? Evidence from geographically weighted regression. GIScience and Remote Sensing, 47(2), 221–240. https://doi.org/10.2747/1548-1603.47.2.221.

Langner A., Siegert F., 2009. Spatiotemporal fire occurrence in Borneo over a period of 10 years. Global Change Biology, 15(1), 48–62. https://doi.org/10.1111/j.1365-2486.2008.01828.x.

Laurance W.F., 2007. Forest destruction in tropical Asia. Current Science, 93(11), 1544–1550. Doi: www.jstor.org/stable/24099083.

Le T.H., Nguyen T.N.T., Lasko K., Ilavajhala S., Vadrevu K.P., Justice C., 2014. Vegetation fires and air pollution in Vietnam. Environmental Pollution, 195, 267–275. Doi: 10.1016/j.envpol.2014.07.023.

Mansuy N., Miller C., Parisien M.A., Parks S.A., Batllori E., Moritz M.A., 2019. Contrasting human influences and macro-environmental factors on fire activity inside and outside protected areas of North America. Environmental Research Letters, 14(6), 064007. Doi: 10.1088/1748-9326/ab1bc5.

Massada A.B., Syphard A.D., Stewart S.I., Radeloff V.C., 2012. Wildfire ignition-distribution modelling: a comparative study in the Huron–Manistee National Forest, Michigan, USA. International Journal of Wildland Fire, 22(2), 174–183. https://doi.org/10.1071/WF11178.

Matin M.A., Chitale V.S., Murthy M.S.R., Uddin K., Bajracharya B., Pradhan S., 2017. Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. International Journal of Wildland Fire, 26(4), 276–286. https://doi.org/10.1071/WF16056.

Mau N.D., Truong N.M., Sasaki H., Takayabu I., 2018. A study of seasonal rainfall in Vietnam at the end of 21st century according to the Non-Hydrostatic Regional Climate Model. Vietnam Journal of Science, Technology and Engineering, 60(3), 89–96. Available at https://c.vjst.vn/index.php/VJSTE/article/view/152/126. Accessed on 11 April 2022.

Ministry of Agriculture and Rural Development, 2022a. Decision No. 2860 /QĐ-BNN-TCLN dated July 27, 2022 on Announcement of national forest area status in 2021. Available at http://www.kiemlam.org.vn/Desktop.aspx/List/So-lieu-dien-bien-rung-hang-nam/NAM_2021/. Accessed on 16 February 2023.

Ministry of Agricutural and Rural Development, 2022b. Online forest fire monitoring system. Available at: http://cbcr.kiemlam.org.vn/thong-ke-diem-chay-toan-quoc.html. Accessed 26 February 2023.

Mishra B., Panthi S., Poudel S., Ghimire B.R., 2023. Forest fire pattern and vulnerability mapping using deep learning in Nepal. Fire Ecology, 19(1), 3. https://doi.org/10.1186/s42408-022-00162-3.

Nambiar E.K.S., Harwood C.E., Kien N.D., 2015. Acacia plantations in Vietnam: research and knowledge application to secure a sustainable future. Southern Forests: A Journal of Forest Science, 77(1), 1–10. https://doi.org/10.2989/20702620.2014.999301.

Ngo-Duc T., 2023. Rainfall extremes in Northern Vietnam: a comprehensive analysis of patterns and trends. Vietnam J. Earth Sci., 45(2), 183–198. https://doi.org/10.15625/2615-9783/18284.

Nguyen A.T., Reiter S., 2014. A climate analysis tool for passive heating and cooling strategies in hot humid climate based on Typical Meteorological Year data sets. Energy and buildings, 68, 756–763. Doi: 10.1016/j.enbuild.2012.08.050.

Nhongo E.J.S., Fontana D.C., Guasselli L.A., Bremm C., 2019. Probabilistic modelling of wildfire occurrence based on logistic regression, Niassa Reserve, Mozambique. Geomatics, Natural Hazards and Risk, 10(1), 1772-1792. Doi: 10.1080/19475705.2019.1615559.

Nurdiana A., Risdiyanto I., 2015. Indicator determination of forest and land fires vulnerability using Landsat-5 TM data (case study: Jambi Province. Procedia Environmental Sciences, 24, 141–151. https://doi.org/10.1016/j.proenv.2015.03.019.

Nyman P., Metzen D., Noske P.J., Lane P.N.J., Sheridan G.J., 2015. Quantifying the effects of topographic aspect on water content and temperature in fine surface fuel. International journal of wildland fire, 24(8), 1129–1142. Doi: 10.1071/WF14195.

Oliveira S., Oehler F., San-Miguel-Ayanz J., Camia A., and Pereira, J.M.C., 2012. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. Forest Ecology and Management, 275, 117–129. https://doi.org/10.1016/j.foreco.2012.03.003.

Parisien M.A., Moritz M.A., 2009. Environmental controls on the distribution of wildfire at multiple spatial scales. Ecological Monographs, 79(1), 127–154. Doi: 10.1890/07-1289.

Parisien M.A., Snetsinger S., Greenberg J.A., Nelson C.R., Schoennagel T., Dobrowski S.Z., Moritz M.A., 2012. Spatial variability in wildfire probability across the western United States. International Journal of Wildland Fire, 21(4), 313–327. https://doi.org/10.1071/WF11044.

Pausas J.G., Keeley J.E., 2009. A burning story: the role of fire in the history of life. Bioscience, 59(7), 593–601. Doi: 10.1525/bio.2009.59.7.10.

Pfeifer M., Gonsamo A., Woodgate W., Cayuela L., Marshall A.R., Ledo A., Paine T.C.E., Marchant R., Burt A., Calders K., Courtney-Mustaphi C., Cuni-Sanchez A., Deere N.J., Denu D., de Tanago J.G., Hayward R., Lau A., Macía M.J., Olivier P.I., Pellikka P., Seki H., Shirima D., Trevithick R., Wedeux B., Wheeler C., Munishi P.K.T., Martin T., Mustari A., Platts P.J., 2018. Tropical forest canopies and their relationships with climate and disturbance: results from a global dataset of consistent field-based measurements. Forest Ecosystems, 5(1), 1–14. https://doi.org/10.1186/s40663-017-0118-7.

Pham N.T.T., Vu H.H., 2020. Characteristics of tropical cyclone precipitating system along central coastal region of Vietnam by TRMM and GSMAP data. Paper presented at the APAC 2019: Proceedings of the 10th International Conference on Asian and Pacific Coasts, 2019, Hanoi, Vietnam.

Phan D.C., Trung T.H., Truong V.T., Sasagawa T., Vu T.P.T., Bui D.T., Hayashi M., Tadono T., Nasahara K.N., 2021. First comprehensive quantification of annual land use/cover from 1990 to 2020 across mainland Vietnam. Scientific reports, 11(1), 1–20. https://doi.org/10.1038/s41598-021-89034-5.

Phillips S.J., 2005. A brief tutorial on Maxent. AT&T Research, 190(4), 231–259.

Phillips S.J., Anderson R.P., Schapire R.E., 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling, 190(3-4), 231–259. Doi: 10.1016/j.ecolmodel.2005.03.026.

Phillips S.J., Miroslav D., Robert E.S., 2022. Maxent software for modeling species niches and distributions (Version 3.4.4. Available at: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 7 December, 2022.

Phuong V.T., Anh H.V., Lung N.N., Sam D.D., Ky N.D., Lien T.V., 2012. Forest ecological stratification in Vietnam. Techniques and Science Publishing House, Hanoi, Vietnam, 139.

Renard Q., Pélissier R., Ramesh B.R., Kodandapani N., 2012. Environmental susceptibility model for predicting forest fire occurrence in the Western Ghats of India. International Journal of Wildland Fire, 21(4), 368–379. https://doi.org/10.1071/WF10109.

Robinne F.N., Secretariat F., 2021. Impacts of disasters on forests, in particular forest fires. UNFFS Background paper. Available at https://www.un.org/esa/forests/wp-content/uploads/2021/08/UNFF16-Bkgd-paper-disasters-forest-fires_052021.pdf. Accessed on 12 Feb 2023.

Schmidt-Thomé P., Nguyen T.H., Pham T.L., Jarva J., Nuottimäki K., 2014. Climate change adaptation measures in Vietnam: Development and Implementation. Springer, 100.

Silviana S., Saharjo B.H., Sutikno S., 2019. Effect of wildfires on tropical peatland vegetation in Meranti Islands District, Riau Province, Indonesia. Biodiversitas Journal of Biological Diversity, 20(10), 3056–3062. https://doi.org/10.13057/biodiv/d201039.

Skinner C.N., 2002. Influence of fire on the dynamics of dead woody material in forests of California and southwestern Oregon. In: Laudenslayer W.F.Jr., Shea P.J., Valentine B.E., Weatherspoon C.P., and Thomas, E. (Eds.). Proceedings of symposium on the ecology and management of dead wood in western forests. 2‒4 November 1999. Reno, Nevada, 445–454. Available at: https://play.google.com/books/reader?id=vvarOeIoM7AC&hl=en_AU&pg=GBS.PA445. Accessed on 10 January 2023.

Su Z., Zheng L., Luo S., Tigabu M., Guo F., 2021. Modeling wildfire drivers in Chinese tropical forest ecosystems using global logistic regression and geographically weighted logistic regression. Natural Hazards, 108, 1317–1345. https://doi.org/10.1007/s11069-021-04733-6.

Sulla-Menashe D., Friedl M.A., 2018. User guide to collection 6 MODIS land cover (MCD12Q1 and MCD12C1) product. Usgs: Reston,

VA, USA. Available at https://lpdaac.usgs.gov/products/mcd12q1v006/. Assessed on 26 February 2023. Doi:10.5067/MODIS/MCD12Q1.006.

Sumarga E., 2017. Spatial indicators for human activities may explain the 2015 fire hotspot distribution in Central Kalimantan Indonesia. Tropical Conservation Science, 10, 1940082917706168. https://doi.org/10.1177/1940082917706168.

Syaufina L., Ainuddin A.N., 2011. Impacts of fire on Southeast Asia tropical forests biodiversity: A review. Asian Journal of Plant Sciences, 10(4), 238–244. Doi: 10.3923/ajps.2011.238.244.

Thach N.N., Ngo D.B.T., Xuan-Canh P., Hong-Thi N., Thi B.H., Nhat-Duc H., Dieu T.B., 2018. Spatial pattern assessment of tropical forest fire danger at Thuan Chau area (Vietnam) using GIS-based advanced machine learning algorithms: A comparative study. Ecological informatics, 46, 74–85. https://doi.org/10.1016/j.ecoinf.2018.05.009.

Thai H.T., Lee D.K., Woo S.Y., 2010. Growth of several indigenous species in the degraded forest in the northern Vietnam. International Journal of Physical Sciences, 5(17), 2664–2671.

Thanh-Van H., Chou T.Y., Fang Y.M., Thach N.N., Huy N.Q., Canh P.X., Toan D.N.B., Linh N.X., Meadows M.E., 2020. Mapping forest fire risk and development of early warning system for N.W. Vietnam using AHP and MCA/GIS methods. Applied Sciences, 10(12), 4348. https://doi.org/10.3390/app10124348.

Trang P.T., Andrew M.E., Chu T., Enright N.J., 2022. Forest fire and its key drivers in the tropical forests of northern Vietnam. International Journal of Wildland Fire, 31(3), 213–229. https://doi.org/10.1071/WF21078.

Trang P.T., Hoi T.M., 2009. Status of bamboo resources and their role in the Thai ethnic minority community of Mai Chau highland district, Hoa Binh Province. In Hai H.T., Canh L.X., Thinh T.H. (Eds.). Proceedings of the 3rd national scientific conference on ecology and biological resources. Institute of Ecology and Biological Resources, Hanoi, Vietnam, 1120–1127.

van der Werf G.R., Randerson J.T., Giglio L., Collatz G.J., Kasibhatla P.S., Arellano Jr A.F., 2006. Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6(11), 3423–3441. https://doi.org/10.5194/acp-6-3423-2006.

Van N.K., 2015. Climatic zoning of the Bac Bo mountainous provinces and Western Thanh Nghe. Vietnam J. Earth Sci., 37(3), 204–212. https://vjs.ac.vn/index.php/jse/article/view/7793/pdf_1. Accessed on 24 February 2023.

Verma A.K., Kaliyathan N.N., Bisht N.S., Nautiyal R., Sharma S.D., 2018. Predictive distribution modeling of forest fire in pine zone of Uttarakhand Himalayas of India. In: Viegas D.X. (Eds.). Advances in Forest Fire Research. ADAI/CEIF, University of COIMBRA, Portugal, 1087–1094. Doi: 10.14195/978-989-26-16-506_120.

Verma S., Jayakumar S., 2012. Impact of forest fire on physical, chemical and biological properties of soil: A review. Proceedings of the International Academy of Ecology and Environmental Sciences, 2(3), 168.

Viegas D.X., Pita L.P., 2004. Fire spread in canyons. International Journal of Wildland Fire, 13(3), 253–274. Doi: 10.1071/WF03050.

Walther G.R., Beißner S., Burga C.A., 2005. Trends in the upward shift of alpine plants. Journal of Vegetation Science, 16(5), 541-548. https://doi.org/10.1111/j.1654-1103.2005.tb02394.x.

Xu X., Jia G., Zhang X., Riley W.J., Xue Y., 2020. Climate regime shift and forest loss amplify fire in Amazonian forests. Global Change Biology, 26(10), 5874–5885. https://doi.org/10.1111/gcb.15279.

Xuan T.T., Nam P.D.T., Le Thanh N., Viet-Ha N., 2023. A novel HHO-RSCDT ensemble learning approach for forest fire danger mapping using GIS. Vietnam J. Earth Sci., 45(3), 338-356. https://doi.org/10.15625/2615-9783/18500.

Yakubu I., Mireku-Gyimah D., Duker A., 2015. Review of methods for modelling forest fire risk and hazard. African Journal of Environmental Science and Technology, 9(3), 155–165. Doi: 10.5897/AJEST2014.1820.

Zhang Y., Lim S., 2019. Drivers of Wildfire Occurrence Patterns in the Inland Riverine Environment of New South Wales, Australia. Forests, 10(6), 524. https://doi.org/10.3390/f10060524.

Zhang Y., Lim S., Sharples J.J., 2016. Modelling spatial patterns of wildfire occurrence in southeastern Australia. Geomatics, Natural Hazards and Risk, 7(6), 1800–1815. Doi: 10.1080/19475705.2016.1155501.

Zhang G., Wang M., Liu K., 2019. Forest fire susceptibility modeling using a convolutional neural network for Yunnan province of China. International Journal of Disaster Risk Science, 10, 386–403. https://doi.org/10.1007/s13753-019-00233-1.

Downloads

Published

18-03-2024

How to Cite

Pham Thanh, T., Chu, T., & Tran Quang, B. (2024). Modelling spatial patterns of forest fire occurrence in the Northwestern region of Vietnam. Vietnam Journal of Earth Sciences, 46(2), 282–302. https://doi.org/10.15625/2615-9783/20366

Issue

Section

Articles