Impact of different ENSO positions and Indian Ocean Dipole events on Indonesian rainfall

Ahmad Zul Amal Zaini, Mutya Vonnisa, Marzuki Marzuki
Author affiliations

Authors

  • Ahmad Zul Amal Zaini Atmospheric Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 25163 Indonesia
  • Mutya Vonnisa Atmospheric Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 25163 Indonesia
  • Marzuki Marzuki Atmospheric Physics Laboratory, Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Padang, 25163 Indonesia Received 12 May 2023; Received in revised form 12

DOI:

https://doi.org/10.15625/2615-9783/19926

Keywords:

ENSO Position, Indian Ocean Dipole, Indonesian rainfall

Abstract

The El Niño Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD) are widely recognized as the leading modes of climate variability in the tropics. This paper investigates the impact of different ENSO positions and IOD events on Indonesian rainfall during the period 1950–2021. The ENSO position is determined by the largest value of four Niño indices: Niño 1+2, Niño 3, Niño 3.4, and Niño 4. These ENSO positions are hereafter referred to as  El-Niño/La-Niña 1+2, El-Niño/La-Niña 3, El-Niño/La-Niña 3.4, and El-Niño/La-Niña 4, respectively. The Dipole Mode Index (DMI) was used to observe IOD events. Different ENSO positions and IOD events result in different responses to Indonesian rainfall, obtained from the European Center for Medium-Range Weather Forecasts (ECMWF) ERA-5 data. The most significant decrease in rainfall occurs during the June-to-Septempber (JJAS) season of El-Niño 3. Conversely, during El-Niño 3.4, rainfall increases in the Sumatra and part of Kalimantan regions. The most significant increase in rainfall occurs during La-Niña 3.4, followed by La-Niña 4, La-Niña 3, and La-Niña 1+2. During a positive IOD phase, the southern part of western Indonesia experiences a decrease in precipitation of more than 30%. A more significant decrease in rainfall (>40%) occurs when a positive IOD co-occurs with El-Niño. During a negative IOD phase, Indonesia's rainfall patterns become more spatially variable. An increase in rainfall is more pronounced when a negative IOD co-occurs with La-Niña. The difference in Indonesian rainfall during different ENSO positions and IOD phases is related to differences in atmosphere-ocean interaction during each condition.

Downloads

Download data is not yet available.

References

Aldrian E., Susanto R., 2003. Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature. International Journal of Climatology: A Journal of the Royal Meteorological Society, 23, 1435–1452.

Annamalai H., Murtugudde R., Potemra J., Xie S.P., Liu P., Wang B., 2003. Coupled dynamics over the Indian Ocean: Spring initiation of the Zonal Mode. Deep-Sea Research Part II: Topical Studies in Oceanography, 50, 2305–2330.

As-syakur A.R., Adnyana I.W.S., Mahendra M.S., Arthana I.W., Merit I.N., Kasa I.W., Ekayanti N.W., Nuarsa I.W., Sunarta I.N., 2014. Observation of spatial patterns on the rainfall response to ENSO and IOD over Indonesia using TRMM Multisatellite Precipitation Analysis (TMPA). International Journal of Climatology, 34, 3825–3839.

Behera S.K., Yamagata T., 2003. Influence of the Indian Ocean Dipole on the Southern Oscillation. Journal of the Meteorological Society of Japan, 81, 169–177.

Dewi S.M., Marzuki M., 2020. Analisis Pengaruh Pergeseran Lokasi ENSO terhadap Curah Hujan di Indonesia. Jurnal Fisika Unand, 9, 176–182.

Gu G., Adler R.F., 2019. Precipitation, temperature, and moisture transport variations associated with two distinct ENSO flavors during 1979–2014. Climate Dynamics, 52, 7249–7265.

Krisnayanti D.S., Bunganaen W., Frans J.H., Seran Y.A., Legono D., 2021. Curve number estimation for ungauged watershed in semiarid region. Civil Engineering Journal (Iran), 7, 1070–1083.

Kumar S., Silva Y., Moya-Álvarez A.S., Martínez-Castro D., 2019. Seasonal and regional differences in extreme rainfall events and their contribution to the world’s precipitation: GPM observations. Advances in Meteorology, 1–15.

Kurniadi A., Weller E., Min S.K., Seong M.G., 2021. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. International Journal of Climatology, 41, 3640–3656.

Lee H.S., 2015. General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity. Water (Switzerland), 7, 1751–1768.

Lestari D.O., Sutriyono E., Iskandar I., 2018. Respective Influences of Indian Ocean Dipole and El Niño-Southern Oscillation on Indonesian Precipitation. Journal of Mathematical & Fundamental Sciences, 50, 257–272.

Marzuki, Hashiguchi H., Vonnisa M., Harmadi, 2018. Seasonal and Diurnal Variations of Vertical Profile of Precipitation over Indonesian Maritime Continent. In Engineering and Mathematical Topics in Rainfall.

Meyers G., McIntosh P., Pigot L., Pook M., 2007. The years of El Niño, La Niña and interactions with the tropical Indian Ocean. Journal of Climate, 20, 2872–2880.

Minh H.N., Ouillon S., Duy V.V., 2022. Sea-level rise in Hai Phong coastal area (Vietnam) and its response to ENSO-evidence from tide gauge measurement of 1960-2020. Science of the Earth, 44, 109–126.

Nabilah F., Prasetyo Y., Sukmono A., 2017. Analisis pengaruh fenomena El Nino dan La Nina terhadap curah hujan tahun 1998-2016 menggunakan indikator ONI (Oceanic Nino Index)(studi kasus: Provinsi Jawa Barat). Jurnal Geodesi Undip, 6, 402–412.

Nur’utami M.N., Hidayat R., 2016. Influences of IOD and ENSO to Indonesian Rainfall Variability: Role of Atmosphere-ocean Interaction in the Indo-pacific Sector. Procedia Environmental Sciences, 33, 196–203.

Nurdiati S., Bukhari F., Julianto M.T., Sopaheluwakan A., Aprilia M., Fajar I., Septiawan P., Najib M.K., 2022. The impact of El Niño southern oscillation and Indian Ocean Dipole on the burned area in Indonesia. Terrestrial, Atmospheric and Oceanic Sciences, 33, 1–17.

Omondi P., Awange J.L., Ogallo L.A., Ininda J., Forootan E., 2013. The influence of low frequency sea surface temperature modes on delineated decadal rainfall zones in Eastern Africa region. Advances in Water Resources, 54, 161–180.

Ramadhan R., Marzuki M., Yusnaini H., Muharsyah R., Suryanto W., Sholihun S., Vonnisa M., Battaglia A., Hashiguchi H., 2022. Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. Remote Sensing, 14, 412–432.

Ramadhan R., Yusnaini H., Marzuki M., Muharsyah R., Suryanto W., Sholihun S., Vonnisa M., Harmadi H., Ningsih A.P., Battaglia A., Hashiguchi H., Tokay A., 2022. Evaluation of GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different Time Scales. Remote Sensing, 14, 1172–1196.

Rasmusson E.M., Carpenter T.H., 1982. Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/ El Nino (Pacific) . Monthly Weather Review, 110, 354–384.

Saji N.H., Goswami B.N., Vinayachandran P.N., Yamagata T., 1999. A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.

Shi J., Qian W., 2018. Asymmetry of two types of ENSO in the transition between the East Asian winter monsoon and the ensuing summer monsoon. Climate Dynamics, 51, 3907–3926.

Song G., Ren R., 2022. How can the positive Indian Ocean Dipole events co-occur with La Niña? International Journal of Climatology, 42, 8724–8737.

Trenberth K.E., Stepaniak D.P., 2001. Indices of El Niño evolution. Journal of Climate, 14, 1697–1701.

Trenbeth K.E., Caron J.M., Stepaniak D.P., Worley S., 2002. Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. Journal of Geophysical Research D: Atmospheres, 107, 4065–4087.

Vinayachandran P.N., Francis P.A., Rao S.A., 2009. Indian Ocean dipole: processes and impacts. Current Trends in Science, 46, 569–589.

Waliser D.E., Gautier C., 1993. A satellite-derived climatology of the ITCZ. Journal of Climate, 6, 2162–2174.

Xu K., Zhu C., Wang W., 2016. The cooperative impacts of the El Niño-Southern Oscillation and the Indian Ocean Dipole on the interannual variability of autumn rainfall in China. International Journal of Climatology, 36, 1987–1999.

Zhang M., Cao Q., Zhu F., Lall U., Hu P., Jiang Y., Kan, G., 2022. The asymmetric effect of different types of ENSO and ENSO Modoki on rainy season over the Yellow River basin, China. Theoretical and Applied Climatology, 149, 1567–1581.

Downloads

Published

15-01-2024

How to Cite

Zaini, A. Z. A., Vonnisa, M., & Marzuki, M. (2024). Impact of different ENSO positions and Indian Ocean Dipole events on Indonesian rainfall. Vietnam Journal of Earth Sciences, 46(1), 100–119. https://doi.org/10.15625/2615-9783/19926

Issue

Section

Articles