Analysis of gravity data for extracting structural features of the northern region of the Central Indian Ridge

Luan Thanh Pham, K.N.D. Prasad
Author affiliations

Authors

  • Luan Thanh Pham University of Science, Vietnam National University, Hanoi, Vietnam
  • K.N.D. Prasad CSIR-National Geophysical Research Institute, Hyderabad, India

DOI:

https://doi.org/10.15625/2615-9783/18206

Keywords:

gravity, edge detection, structural feature, Central Indian Ridge

Abstract

In this study, structural lineaments and fracture zones of the northern region of the Central Indian Ridge have been determined using gravity data from XGM2019e_2159 global gravity model. In this scope, firstly, the edge detection performances of the gradient amplitude of the tilt angle (THDR), theta map (TM), improved local phase (ILP), and improved logistic (IL) methods have been evaluated on synthetic examples. The results show that the IL method effectively avoids false edges and produces high-resolution edges. Then, the methods are applied to the gravity anomaly of the northern region of the Central Indian Ridge. It has been determined that the most prominent structural lineaments observed over the region are in the NE-SW and NW-SE directions. These trends match reasonably with the significant trends of the Tilt depth solutions that show a depth range of 2.2 km to 7 km for different geological structures. In addition, the obtained results are compatible with the known fracture zones of the study area. The findings help us to improve our understanding of the structure and tectonic framework of the study region.

Downloads

Download data is not yet available.

References

Apeh O.I., Tenzer R., 2022. Selection of an optimum global gravitational model for geological mapping of Afikpo and Anambra Basins in Nigeria. Geodesy and Cartography, 48(2), 92-106.

Bruinsma S.L., Förste C., Abrikosov O., Lemoine J.M., Marty J.C., Mulet S., Rio M.H., Bonvalot S., 2014. ESA's satellite‐only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41(21), 7508-7514.

Casas A.M., Cortes A.L., Maestro A., Soriano M.A., Riaguas A., Bernal J., 2000. LINDENS: A program for lineament length and density analysis. Computers and Geosciences, 26(9-10), 1011-1022.

Cochran J.R., Kurras G.J., Edwards M.H., Coakley B.J., 2003. The Gakkel Ridge: Bathymetry, gravity anomalies, and crustal accretion at extremely slow spreading rates. Journal of Geophysical Research-Solid Earth, 108, 1978-2012.

Cooper G.R.J., 2009. Balancing images of potential-field data. Geophysics, 74(3), L17-L20.

Cooper G.R.J., 2014. Reducing the dependence of the analytic signal amplitude of aeromagnetic data on the source vector direction. Geophysics, 79, J55-J60.

Cooper G.R.J., Cowan D.R., 2008. Edge enhancement of potential-field data using normalized statistics. Geophysics, 73, H1-H4.

Cordell L., 1979. Gravimetric expression of graben faulting in Santa Fe country and the Espanola Basin. In: 30th Field conference New Mexico, New Mexico Geological Society Guidebook, 59-64.

DeMets C., Gordon R.G., Argus D.F., Stein S., 1990. Current plate motions. Geophysical Journal International, 101(2), 425-478.

Demets C., Gordon R.G., Vogt P., 1994. Location of the Africa-Australia-India triple junction and motion between the Australian and Indian plates: Results from an aeromagnetic investigation of the Central Indian and Carlsberg ridges. Geophysical Journal International, 119(3), 893-930.

Dick H.J.B., Lin J., Schouten H., 2003. An ultras low spreading class of ocean ridge, Nature, 426, 405-412.

Dwivedi D., Chamoli A., 2021. Source edge detection of potential field data using Wavelet decomposition. Pure and Applied Geophysics, 178(3), 919-938.

Ekinci Y.L., Ertekin C., Yiğitbaş E., 2013. On the effectiveness of directional derivative based filters on gravity anomalies for source edge approximation: synthetic simulations and a case study from the Aegean graben system (western Anatolia, Turkey). Journal of Geophysics and Engineering, 10(3), 035005.

Ekinci Y.L., Yiğitbaş E., 2015. Interpretation of gravity anomalies to delineate some structural features of Biga and Gelibolu peninsulas, and their surroundings (north-west Turkey). Geodinamica Acta, 27(4), 300-319.

Eldosouky A.M., Pham L.T., Duong V.H., Ghomsi F.E.K., Henaish A., 2022a. Structural interpretation of potential field data using the enhancement techniques: a case study. Geocarto International. Doi: 10.1080/10106049.2022.2120548.

Eldosouky A.M., Pham L.T., Henaish A., 2022b. High precision structural mapping using edge filters of potential field and remote sensing data: A case study from Wadi Umm Ghalqa area, South Eastern Desert, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 25(2), 501-513.

Fedi M., Florio G., 2001. Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49(1), 40-58.

Fisher R.L., Johnson G.L., Heezen B.C., 1967. Mascarene Plateau, Western Indian Ocean. Geological Society of America Bulletin, 78(10), 1247-1266.

Fisher R.L., Sclater J.G., McKenzie D.P., 1971. Evolution of the central Indian ridge, western Indian Ocean. Geological Society of America Bulletin, 82(3), 553-562.

Förste C., Bruinsma S., Abrikosov O., Lemoine J., Schaller T., Götze H., Balmino G., 2014. EIGEN-6C4. The latest combined global gravity field model including GOCE data up to degree and order, 2190, 5th GOCE User Workshop, Paris, 1-29.

Gilardoni M., Reguzzoni M., Sampietro D., 2016. GECO: a global gravity model by locally combining GOCE data and EGM2008. Stud. Geophy. et Geod., 60, 228-247.

Ghomsi F.E.K., Pham L.T., Steffen R., Ribeiro-Filho N., Tenzer R., 2022c. Delineating structural features of North Cameroon using EIGEN6C4 high-resolution global gravitational model. Geological Journal, 1-15.

Ghomsi F.E.K., Pham L.T., Tenzer R., Esteban F.D., Vu T.V., Kamguia J., 2022b. Mapping of fracture zones and structural lineaments of the Gulf of Guinea passive margins using marine gravity data from CryoSat-2 and Jason-1 satellites. Geocarto International. Doi: 10.1080/10106049.2022.2040602.

Ghomsi F.E.K., Tenzer R., Njinju E., Steffen R., 2022a. The crustal configuration of the West and Central African Rift system from gravity and seismic data analysis. Geophysical Journal International, 230(2), 995-1012.

Hang N.T., Thanh D.D., Minh L.H., 2017. Application of directional derivative method to determine boundary of magnetic sources by total magnetic anomalies. Vietnam Journal of Earth Science, 39(4), 360-375.

Hantke R., Scheidegger A.E., 1998. Morphotectonics of the Mascarene Islands. Annali Di Geofisica, 41(2), 165-180.

Hsu S.K., Sibuet J.C., Shyu C.T., 1996. High-resolution detection of geologic boundaries from potential field anomalies: an enhanced analytic signal technique. Geophysics, 61(2), 373-386.

Kafadar Ö., 2017. CURVGRAV-GUI: a graphical user interface to interpret gravity data using curvature technique. Earth Sci Inform., 10(4), 525-537.

Kafadar Ö., 2022. Applications of the Kuwahara and Gaussian filters on potential field data, Journal of Applied Geophysics, 104583.

Kostelecky J., Klokocník J., Bucha B., Bezdek A., Förste C., 2015. Evaluation of gravity field model EIGEN-6C4 by means of various functions of gravity potential, and by GNSS/levelling. Geoinformatics Fce Ctu, 14(1), 7-28.

Ma G., 2013. Edge detection of potential field data using improved local phase filter. Explor. Geophys., 44(1), 36-41

Ma G., Li L., 2012. Edge detection in potential fields with the normalized total horizontal derivative. Comput. Geosci., 41, 83-87.

McDougall I.A.N., Chamalaun F.H., 1969. Isotopic dating and geomagnetic polarity studies on volcanic rocks from Mauritius, Indian Ocean. Geological Society of America Bulletin, 80(8), 1419-1442.

McKenzie D.P., Sclater J.G., 1971. The evolution of the Indian Ocean since the Late Cretaceous. Geophys. Jour. Roy. Astr. Soc., 25, 437- 528.

Mellor S.H., 1998. The geochemistry and petrology of the Rodrigues Ridge (Western Indian Ocean), PhD Thesis, University of Greenwich.

Melouah O., Eldosouky A.M., Ebong W.D., 2021. Crustal architecture, heat transfer modes and geothermal energy potentials of the Algerian Triassic provinces, Geothermics, 96, 102211.

Miller H.G., Singh V., 1994. Potential field tilt a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213-217.

Muller R.D., Royer Y.J., Lawver L.A., 1993. Revised plate motions relative to the hotspots from combined Atlantic and Indian Ocean hotspot tracks, Geology, 21, 275-278.

Nasuti Y., Nasuti A., 2018. NTilt as an improved enhanced tilt derivative filter for edge detection of potential field anomalies. Geophysical Journal International, 214(1), 36-45.

Nzeuga A.R., Ghomsi F.E., Pham L.T., Eldosouky A.M., Aretouyap Z., Kana J.D., Yasmine Z.T., Fokem A.B.K., Nouayou R., Abdelrahman K., Fnais M.S., Andráš P., 2022. Contribution of advanced edge detection methods of potential field data in the tectono-structural study of the southwestern part of Cameroon. Frontiers in Earth Science, 10, 970614.

Oksum E., 2021. Grav3CH_inv: a GUI-based MATLAB code for estimating the 3-D basement depth structure of sedimentary basins with vertical and horizontal density variation. Computers and Geoscience, 155, 104856.

Oksum E., Le D.V., Vu M.D., Nguyen T.H.T., Pham L.T., 2021. A novel approach based on the fast sigmoid function for interpretation of potential field data. Bulletin of Geophysics and Oceanography, 62(3), 543-556.

Oruc B., 2011. Edge Detection and Depth Estimation Using a Tilt Angle Map from Gravity Gradient Data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, 168, 1769-1780.

Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.D., Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., 2011. First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(11), 819-843.

Pail, R., Fecher, T., Barnes, D., Factor, J.F., Holmes, S.A., Gruber, T. and Zingerle, P., 2018. Short note: the experimental geopotential model XGM2016. Journal of geodesy, 92(4), 443-451.

Pal S.K., Majumdar T.J., Pathak V.K., Narayan S., Kumar U., Goswami O.P., 2016a. Utilization of high-resolution EGM2008 gravity data for geological exploration over the Singhbhum-Orissa Craton, India. Geocarto International, 31(7), 783-802.

Pal S.K., Narayan S., Majumdar T.J., Kumar U., 2016b. Structural mapping over the 85°E Ridge and surroundings using EIGEN6C4 highresolution global combined gravity field model: an integrated approach. Marine Geophysical Research, 37(3), 159-184.

Patriat P., 1987. Reconstruction of the evolution of the Indian Ocean ridge system using plate cidmatics methods. Aust Lands. Antarctica. Fr. (Mission Rech.), Paris, 308.

Patriat P., Segoufin J., 1988. Reconstruction of the central Indian ocean, Tectonophysics, 155(1-4), 211-234.

Pavlis N.K., Holmes S.A., Kenyon S.C., Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 117(B04406), 1-38.

Pham L.T., Do T.D., Oksum E., Le S.T., 2019c. Estimation of Curie point depths in the Southern Vietnam continental shelf using magnetic data. Vietnam Journal of Earth Science, 41(3), 216-228.

Pham L.T., Kafadar O., Oksum E., Hoang-Minh T., 2022a. A comparative study on the peak detection methods used to interpret potential field data: A case study from Vietnam. Geocarto International, 37(13), 3679-3696.

Pham L.T., Oksum E., Do T.D., 2019b. Edge enhancement of potential field data using the logistic function and the total horizontal gradient. Acta Geodaetica et Geophysica, 54, 143-155.

Pham L.T., Oksum E., Do T.D., Le-Huy M., 2018 New method for edges detection of magnetic sources using logistic function. Geofizichesky Zhurnal, 40(6), 127-135.

Pham L.T., Oksum E., Do T.D., Le-Huy M., Vu M.D., Nguyen V.D., 2019a. LAS: a combination of the analytic signal amplitude and the generalised logistic function as a novel edge enhancement of magnetic data. Contributions to Geophysics and Geodesy, 49(4), 425-440.

Pham L.T., Oksum E., Eldosouky A.M., Gomez-Ortiz D., Abdelrahman K., Altinoğlu F.F., Nguyen T.N., 2022c. Determining the Moho interface using a modified algorithm based on the combination of the spatial and frequency domain techniques: a case study from the Arabian Shield. Geocarto International. Doi: 10.1080/10106049.2022.2037733.

Pham L.T., Oksum E., Kafadar O., Trinh P.T., Nguyen D.V., Vo Q.T., Le S.T., Do T.D., 2022b. Determination of subsurface lineaments in the Hoang Sa islands using enhanced methods of gravity total horizontal gradient. Vietnam Journal of Earth Sciences, 44(3), 395-409.

Pham L.T., Ghomsi F.F.K., Vu T.V., Oksum E., Steffen R., Tenzer R., 2022c. Mapping the structural configuration of the western Gulf of Guinea using advanced gravity interpretation methods. Physics and Chemistry of the Earth, 129 (2023) 103341.

Pham L.T., Oliveira S.P., Le M.H., Trinh P.T., Vu T.V., Duong V.H., Ngo T.N.T., Do T.D., Nguyen T.H., Eldosouky A.M., 2021e. Delineation of

structural lineaments of the Southwest Sub-basin (East Vietnam Sea) using global marine gravity model from CryoSat-2 and Jason-1

satellites. Geocarto International, 1-18.

Doi: 10.1080/10106049.2021.1981463.

Pham L.T., Vu T.V., Le Thi S., Trinh P.T., 2020. Enhancement of potential field source boundaries using an improved logistic filter. Pure and Applied Geophysics, 177(11), 5237-5249.

Pilkington M., Tschirhart V., 2017. Practical considerations in the use of edge detectors for geologic mapping using magnetic data. Geophysics, 82(3), J1-J8.

Prasad K.N.D., Pham L.T., Singh A.P., 2022a. Structural mapping of potential field sources using BHG filter. Geocarto International, 1-28.

Doi: 10.1080/10106049.2022.2048903.

Prasad K.N.D., Pham L.T., Singh A.P., 2022b. A novel filter “ImpTAHG” for edge detection and a case study from Cambay Rift Basin, India. Pure and Applied Geophysics, 179(6-7), 2351-2364.

Radha Krishna M., Verma R.K., 2000. Seismotectonics of the Central Indian Ridge, western Indian Ocean. Journal of the Geological Society of India, 55(5), 515-527.

Roest W.R., Verhoef J., Pilkington M., 1992. Magnetic interpretation using the 3-D analytic signal. Geophysics 57, 116-125.

Royer J.Y., Schlich R., 1988. Southeast Indian Ridge between the Rodriguez Triple junction and Saint-Paul islands: Detailed kinematics for the past 20 m.y. Journal of Geophysical Research, 93, 13524-13550.

Royer J.Y., Gordon R.G., DeMets C., Vogt P.T., 1997. New limits on the motion between India and Australia since Chron 5 (11 Ma) and implications for lithospheric deformation in the equatorial Indian Ocean. Geophysical Journal International, 129, 41-53.

Royer J.Y., Schlich R., 1988. Southeast Indian Ridge between the Rodriguez triple junction and the Amsterdam and Saint‐Paul islands: Detailed kinematics for the past 20 my. Journal of Geophysical Research: Solid Earth, 93(B11), 13524-13550.

Sahoo S., Narayan S., Pal S.K., 2022a. Fractal analysis of lineaments using CryoSat-2 and Jason-1 satellite-derived gravity data: Evidence of a uniform tectonic activity over the middle part of the Central Indian Ridge, Physics and Chemistry of the Earth, 128, 103237.

Sahoo S., Narayan S., Pal S.K., 2022b. Appraisal of gravity-based lineaments around Central Indian Ridge (CIR) in different geological periods: Evidence of frequent ridge jumps in the southern block of CIR. Journal of Asian Earth Sciences, 239, 105393.

Sahoo S.D., Pal S.K., 2019. Mapping of Structural Lineaments and Fracture Zones around the Central Indian Ridge (10°S-21°S) using EIGEN 6C4 Bouguer Gravity Data. J. Geol. Soc. India, 94(4), 359-366.

Saibi H., Amir G., Mohamed F.S., 2019. Subsurface structural mapping using gravity data of AlAin region, Abu Dhabi Emirate, United Arab Emirates. Geophysical Journal International, 216(2), 1201-1213.

Saibi H., Azizi M., Mogren S., 2016. Structural investigations of Afghanistan deduced from remote sensing and potential field data. Acta Geophysica, 64(4), 978-1003.

Tapscott C.R., Patriat P., Fisher R.L., Sclater J.G., Hoskins H., Parsons B., 1980. The Indian Ocean triple junction. Journal of Geophysical Research: Solid Earth, 85(B9), 4723-4739.

Verduzco B., Fairhead J.D., Green C.M., MacKenzie C., 2004. New insights into magnetic derivatives for structural mapping. The Leading Edge, 23, 116-119.

Weissel J.K., Anderson R.N., Geller C.A., 1980. Deformation of the Indo-Australian plate. Nature, 287(5780), 284-291.

Wessel P., Matthews K.J, Müller R.D., Mazzoni A., Whittaker J.M., Myhill R., Chandler M.T, 2015. Semi-automatic fracture zone tracking. Geochemistry Geophysics Geosystems, 16, 2462-2472.

Wijns C., Perez C., Kowalczyk P., 2005. Theta map: Edge detection in magnetic data. Geophysics, 70, 39-43.

Yatheesh V., Dyment J., Bhattacharya G.C., Royer J.Y., Kamesh Raju K.A., Ramprasad T., Chaubey A.K., Patriat P., Srinivas K., Choi Y., 2019. Detailed structure and plate reconstructions of the Central Indian Ocean between 83.0 and 42.5 Ma (Chrons 34 and 20). Journal of Geophysical Research: Solid Earth, 124(5), 4305-4322.

Yuan H., Wan X., Wu Y., Peng Y., Guo Z., 2022. Evaluation of ultra-high degree gravity field models: a case study of Eastern Tibetan Plateau and Sichuan Province. Terrestrial, Atmospheric and Oceanic Sciences, 33(1), 1-12.

Yuan Y., Gao J.Y., Chen L.N., 2016. Advantages of horizontal directional Theta method to detect the edges of full tensor gravity gradient data. Journal of Applied Geophysics, 130, 53-61.

Zhang X., Yu P., Tang R., Xiang Y., Zhao C.J., 2015. Edge enhancement of potential field data using an enhanced tilt angle. Exploration Geophysics, 46(3), 276-283.

Zingerle P., Pail R., Gruber T, Oikonomidou X., 2020. The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7), 1-12.

Zuber M.T., 1987. Compression of oceanic lithosphere: An analysis of intraplate deformation in the Central Indian Basin. Journal of Geophysical Research: Solid Earth, 92(B6), 4817-4825.

Downloads

Published

30-03-2023

How to Cite

Thanh Pham, L., & Prasad, K. (2023). Analysis of gravity data for extracting structural features of the northern region of the Central Indian Ridge. Vietnam Journal of Earth Sciences, 45(2), 147–163. https://doi.org/10.15625/2615-9783/18206

Issue

Section

Articles