Earthquake affects subsidence in Jakarta using Sentinel-1A time series images and 2D-MSBAS method
Author affiliations
DOI:
https://doi.org/10.15625/2615-9783/18021Keywords:
Groundwater extraction, subsidence, earthquakes, Jakarta, Sentinel-1A, MSBASAbstract
Excessive groundwater extraction has been well known as the main factor causing land subsidence in several cities in Jakarta Basin, Indonesia. This area is surrounded by active geological structures and has thick sediments. This study emphasizes the impacts of earthquakes on subsidence over Jakarta and its surroundings by using the Sentinel-1A images and 2D-MSBAS (Multidimensional Small Baseline Subset) method. Sixty-one ascending and 66 descending Sentinel-1A images were utilized to derive 121 deformation maps from 26 March 2017 to 2 July 2019 by using the 2D-MSBAS method. Linear and nonlinear displacement variations were analyzed to understand earthquake impacts on the subsidence and their seasonal characteristics. On 23 January 2018, the Mw 5.9 earthquake shaking off the coast of Java significantly affected ground surface subsidence in Jakarta. A cumulative magnitude and linear rate increase of the subsidence reached approximately -196 mm and -44 mm/yr, respectively, during the period of this study. Besides the subsidence rate changes, the earthquake also affected the expansion of the localized subsiding areas at several sites. The earthquake-activated fault affected the ground surface of the surrounding area, moving east and subsiding in the western part of the study area. Meanwhile, variations of the nonlinear subsidence to the seasonal precipitation depended on the aquifer system behavior to retain an elastic expansion and land cover types in the investigated regions.
Downloads
References
Abidin H.Z., Andreas H., Djaja R., Darmawan D., Gamal M., 2008. Land subsidence characteristics of Jakarta between 1997 and 2005, as estimated using G.P.S. surveys. G.P.S. Solut., 12, 23-32. https://doi.org/10.1007/s10291-007-0061-0
Abidin H.Z., Andreas H., Gumilar I., Fukuda Y., Pohan Y.E., Deguchi T., 2011. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards, 59, 1753-1771. https://doi.org/10.1007/s11069-011-9866-9.
Abidin H.Z., Djaja R., Darmawan D., Hadi S., Akbar A., Rajiyowiryono H., Sudibyo Y., Meilano I., Kasuma M.A., Kahar J., Subarya C., 2001. Land subsidence of Jakarta (Indonesia) and its geodetic monitoring system. Nat. Hazards, 23, 365-387. https://doi.org/10.1023/A:1011144602064.
Chaussard E., Amelung F., Abidin H., Hong S., 2013. Remote Sensing of Environment Sinking cities in Indonesia : ALOS PALSAR detects rapid subsidence due to groundwater and gas extraction. Remote Sens. Environ., 128, 150-161. https://doi.org/10.1016/j.rse.2012.10.015.
Chen C.W., Zebker H.A., 2001. Two-dimensional phase unwrapping with use of Statistical Models for Cost Functions in Nonlinear Optimization. J. Opt. Soc. Am. A, 18, 338-351.
Delinom R.M., Assegaf A., Abidin H.Z., Taniguchi M., Suherman D., Lubis R.F., Yulianto E., 2009. The contribution of human activities to subsurface environment degradation in Greater Jakarta Area, Indonesia. Sci. Total Environ., 407, 3129-3141. https://doi.org/10.1016/j.scitotenv.2008.10.003
Fu G., Sun W., 2006. Global co-seismic displacements caused by the 2004 Sumatra-Andaman earthquake (Mw 9.1). Earth, Planets Sp., 58, 149-152. https://doi.org/10.1186/BF03353371.
Gunawan E., Widiyantoro S., 2019. Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate. J. Geodyn., 123, 49-54. https://doi.org/10.1016/j.jog.2019.01.004.
Hakim W.L., Achmad A.R., Lee C.W., 2020. Land subsidence susceptibility mapping in jakarta using functional and meta‐ensemble machine learning algorithm based on time‐series insar data. Remote Sens., 12, 1-26. https://doi.org/10.3390/rs12213627.
Hirose K., Maruyama Y., Murdohardono D., Effendi A., Abidin H.Z., 2001. Land subsidence detection using JERS-1 SAR Interferometry. Pap. Present. 22nd Asian Conf. Remote Sens., 6.
Khakim M.Y.N., Tsuji T., Matsuoka T., 2014. Lithology-controlled subsidence and seasonal aquifer response in the Bandung basin, Indonesia, observed by synthetic aperture radar interferometry. Int. J. Appl. Earth Obs. Geoinf., 32, 199-207. https://doi.org/10.1016/j.jag.2014.04.012.
Kitagawa Y., Koizumi N., Takahashi M., Matsumoto N., Sato T., 2006. Changes in groundwater levels or pressures associated with the 2004 earthquake off the west coast of northern Sumatra (M9.0). Earth, Planets Sp., 58, 173-179. https://doi.org/10.1186/BF03353375.
Koulali A., McClusky S., Susilo S., Leonard Y., Cummins P., Tregoning P., Meilano I., Efendi J., Wijanarto A.B., 2017. The kinematics of crustal deformation in Java from G.P.S. observations: Implications for fault slip partitioning. Earth Planet. Sci. Lett., 458, 69-79. https://doi.org/10.1016/j.epsl.2016.10.039.
Miranda N., 2015. Impact of the Elevation Antenna Pattern Phase Compensation on the Interferometric Phase Preservation. E.S.A. Tech. Note, 1-15. https://doi.org/ESA-EOPG-CSCOP-TN-0004.
Murtianto E., 1993. Hydrogeological Map of Indonesia, Sheet Jakarta Scale 1 :100,000. Bandung [Indonesia].
Ng A.H.M., Ge L., Li X., Abidin H.Z., Andreas H., Zhang K., 2012. Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (P.S.I.) technique with ALOS PALSAR. Int. J. Appl. Earth Obs. Geoinf., 18, 232-242. https://doi.org/10.1016/j.jag.2012.01.018
Samsonov, S., 2019. Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation. J. Geod. 93, 2651-2660. https://doi.org/10.1007/s00190-019-01325-y.
Samsonov S., d’Oreye N., 2012. Multidimensional time-series analysis of ground deformation from multiple InSAR data sets applied to Virunga Volcanic Province. Geophys. J. Int., 191, 1095-1108. https://doi.org/10.1111/j.1365-246X.2012.05669.x.
Samsonov S.V., d’Oreye N., 2017. Multidimensional Small Baseline Subset (MSBAS) for Two-Dimensional Deformation Analysis: Case Study Mexico City. Can. J. Remote Sens., 43, 318-329. https://doi.org/10.1080/07038992.2017.1344926.
Samsonov S.V., Feng W., Peltier A., Geirsson H., d'Oreye N., Tiampo K.F., 2017. Multidimensional Small Baseline Subset (MSBAS) for volcano monitoring in two dimensions: Opportunities and challenges. Case study Piton de la Fournaise volcano. J. Volcanol. Geotherm. Res., 344, 121-138. https://doi.org/10.1016/j.jvolgeores.2017.04.017.
Samsonov S.V., González P.J., Tiampo K.F., D’Oreye N., 2014. Modeling of fast ground subsidence observed in southern Saskatchewan (Canada) during 2008-2011. Nat. Hazards Earth Syst. Sci., 14, 247-257. https://doi.org/10.5194/nhess-14-247-2014.
Sandwell D., Mellors R., Tong X., Wei M., Wessel P., 2011. Open Radar Interferometry Software for Mapping Surface Deformation. Eos, Trans. Am. Geophys. Union, 92, 234-235.
Sandwell D., Mellors R., Tong X., Xu X., Wei M., Wessel P., 2016. GMTSAR : An InSAR Processing System Based on Generic MApping Tools.
Saygin E., Cummins P.R., Cipta A., Hawkins R., Pandhu R., Murjaya J., Masturyono, Irsyam M., Widiyantoro S., Kennett B.L.N., 2016. Imaging architecture of the Jakarta Basin, Indonesia with transdimensional inversion of seismic noise. Geophys. J. Int., 204, 918-931. https://doi.org/10.1093/gji/ggv466.
Shi X., Zhang S., Jiang M., Pei Y., Qu T., Xu J., Yang C., 2021. Spatial and temporal subsidence characteristics in Wuhan city (China) during 2015-2019 inferred from Sentinel-1 SAR Interferometry. Nat. Hazards Earth Syst. Sci. Discuss., 1-20. https://doi.org/10.5194/nhess-2021-35.
Shirzaei M., Bürgmann R., Fielding E.J., 2017. Applicability of Sentinel-1 Terrain Observation by Progressive Scans multitemporal interferometry for monitoring slow ground motions in the San Francisco Bay Area. Geophys. Res. Lett., 44, 2733-2742. https://doi.org/10.1002/2017GL072663.
Sirait A.M.M., Meltzer A.S., Waldhauser F., Stachnik J.C., Daryono, D., Fatchurochman I., Jatnika J., Sembiring A.S., 2020. Analysis of the 15 december 2017 mw 6.5 and the 23 January 2018 mw 5.9 java earthquakes. Bull. Seismol. Soc. Am. 110, 3050-3063. https://doi.org/10.1785/0120200046.
Tetuko J., Sumantyo S., Member S., Setiadi B., Perissin D., Shimada M., Mathieu P., Urai M., Abidin H.Z., 2016. Giant Sea Wall Using PSI ALOS PALSAR. IEEE Geosci. Remote Sens. Lett., 13, 1472-1476.
Wang C. yuen, Cheng L.H., Chin C. Van, Yu S.B., 2001. Coseismic hydrologic response of an alluvial fan to the 1999 Chi-Chi earthquake, Taiwan. Geology, 29, 831-834. https://doi.org/10.1130/0091-7613(2001)029<0831:CHROAA>2.0.CO;2.
Wessel P., Smith W.H.F., 1998. New, improved version of generic mapping tools released. Eos, Trans. Am. Geophys. Union, 79, 579-579. https://doi.org/10.1029/98eo00426.
Xu X., Sandwell D.T., Smith-Konter B., 2019. Coseismic displacements and surface fractures from sentinel-1 InSAR: 2019 Ridgecrest earthquakes. Seismol. Res. Lett., 91, 1979-1985. https://doi.org/10.1785/0220190275.
Xu X., Sandwell D.T., Tymofyeyeva E., Gonzalez-Ortega A., Tong X., 2017. Tectonic and anthropogenic deformation at the cerro prieto geothermal step-over revealed by sentinel-1A insar. IEEE Trans. Geosci. Remote Sens., 55, 5284-5292. https://doi.org/10.1109/TGRS.2017.2704593.
Yalvac S., 2020. Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium- and high-grade deformation areas. Environ. Monit. Assess., 192. https://doi.org/10.1007/s10661-019-8009-8.
Yang C., Han B., Zhao C., Du J., Zhang D., Zhu S., 2019. Co- and post-seismic deformation mechanisms of the MW 7.3 Iran earthquake (2017) revealed by Sentinel-1 InSAR observations. Remote Sens., 11, 1-17. https://doi.org/10.3390/rs11040418.
Zhang X., Zhang H., Wang C., Tang Y., Zhang B., Wu F., Wang J., Zhang Z., 2019. Time-series InSAR monitoring of permafrost freeze-thaw seasonal displacement over Qinghai-Tibetan Plateau using sentinel-1 data. Remote Sens., 11. https://doi.org/10.3390/rs11091000.