Neo-deterministic seismic hazard maps of Kosovo

Enrico Brandmayr, Franco Vaccari , Fabio Romanelli, Gordana Vlahovic, Giuliano Francesco Panza
Author affiliations

Authors

  • Enrico Brandmayr 1-Department of Mathematics and Geosciences, University of Trieste, Trieste, 34128 Italy; 2-Accademia Nazionale dei Lincei, Rome, Italy
  • Franco Vaccari Department of Mathematics and Geosciences, University of Trieste, Trieste, 34128 Italy
  • Fabio Romanelli Department of Mathematics and Geosciences, University of Trieste, Trieste, 34128 Italy
  • Gordana Vlahovic Department of Environmental, Earth and Geospatial Sciences, North Carolina Central University, Durham, NC, USA
  • Giuliano Francesco Panza 1-Accademia Nazionale dei Lincei, Rome, Italy; 2-Institute of Geophysics, China Earthquake Administration, Beijing, China; 3-Accademia Nazionale delle Scienze detta dei XL, Rome, Italy; 4-International Seismic Safety Organization, ISSO, Arsita, Italy; 5-Beijing University of Civil Engineering and Architecture (BUCEA), China

DOI:

https://doi.org/10.15625/2615-9783/16328

Keywords:

seismic hazard, neo-deterministic, Kosovo, NDSHA, morphostructural nodes

Abstract

Kosovo is one of the most seismically active regions in Europe, lying within the Alpine-Mediterranean tectonic belt. Historical records for the region show several catastrophic earthquakes with epicentral intensity IX (MCS). However, due to Kosovo’s high population density, high prevalence of traditional construction, and insufficient enforcement of building codes, Kosovo is vulnerable to earthquake damage. In this study, we present earthquake hazard maps for bedrock conditions in Kosovo based on the well-known Neo-deterministic Seismic Hazard Assessment (NDSHA) method. NDSHA relies upon the fundamental physics of wave generation and propagation in complex geologic structures to generate realistic time series, used as input for the computation of several ground motion parameters, integrating the available knowledge of seismic history, seismogenic zones and morphostructural nodes. In accordance with continuum mechanics, the tensor nature of earthquake ground motion is preserved, producing realistic signals using structural models obtained by tomographic inversion and earthquake source information readily available in literature. Our maps are generally consistent with the observed intensity IX (MCS) and suggest that, in some instances, intensity X could be reached.

Downloads

Download data is not yet available.

References

Båth M., 1973. Introduction to Seismology, Birkhäuser Verlag, Basel.

Bela J., Panza G.F., 2021. NDSHA - The New Paradigm for RSHA - An Updated Review. Vietnam Journal of Earth Sciences, 43(2), 111-188.

Brandmayr E., 2012. The geodynamics of the Mediterranean in the framework of the global asymmetric Earth: evidences from seismological and geophysical methods. PhD Thesis, University of Trieste.

Brandmayr E., Raykova R.B., Zuri M., Romanelli F., Doglioni C., Panza G.F., 2010. The lithosphere in Italy: structure and seismicity. Journal of the Virtual Explorer, 36.

Burchfiel B C., et al., 2008. Evolution and dynamics of the Cenozoic tectonics of the South Balkan extensional system. Geosphere, 4(6), 919-938.

CEN, 2004. EN-1998-1:2004 - Eurocode 8: Design of Structures for Earthquake Resistance - Part 1: General rules, seismic actions and rules for buildings, European Committee for Standardization, Brussels.

Elezaj Z., 2009. Seismotectonic settings of Kosova. Journal of International Environmental Application & Science, 4(2), 167-176.

Gelfand I.M., Guberman S.I., Izvekova M.L., Keilis- Borok V.I., Ranzman E.J., 1972. Criteria of high seismicity, determined by pattern recognition. Tectonophysics, 13, 415-422.

Gorshkov A.I., Panza G.F., Soloviev A.A., Aoudia A., 2004. Identification of seismogenic nodes in the Alps and Dinarides. Bollettino della Società geologica italiana, 123(1), 3-18.

Grünthal G., Wahlström R., Stromeyer D., 2013. The SHARE European Earthquake Catalogue (SHEEC) for the time period 1900-2006 and its comparison to the European-Mediterranean Earthquake Catalogue (EMEC). Journal of Seismology, 17(4), 1339-1344.

Gülerce Z.G., et al., 2017. Seismic hazard maps for the Western Balkan. Environmental Engineering-Inženjerstvo Okoliša, 4(1), 7-17.

Kárnik V., Radu C., Polonio G., Procházková D., 1983. Map of maximum observed intensities in Europe. In Developments in Solid Earth Geophysics. Elsevier, 15, 105-107.

Kennett B.L.N., Engdahl E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International, 105(2), 429-465.

Kronrod T., Radulian M., Panza G., Popa M., Paskaleva I., Radovanovich S., Gribovszki K., Sandu I., Pekevski L., 2013. Integrated transnational macroseismic data set for the strongest earthquakes of Vrancea (Romania). Tectonophysics, 590, 1-23.

Lee V.W., Trifunac M.D., 2018. Seismic hazard maps in Serbia. Soil Dynamics and Earthquake Engineering, 115, 917-932.

Martinez M.D., Lana X., Guinto E.R., 2009. Elasto-anelastic regional structures of the crust and upper mantle beneath the Mediterranean basin derived from uncoupled casual inversion of rayleigh wave attenuation coefficient and group velocities. Geophysical research abstracts 11, EGU2009-2420.

Martinez M.D., Lana X., Guinto E.R., 2010. Shear-wave attenuation tomography of the lithosphere-asthenosphere system beneath the Mediterranean region, Tectonophysics, 481, 51-67.

Muço B., Vaccari F., Panza G., Kuka N., 2002. Seismic zonation in Albania using a deterministic approach. Tectonophysics, 344(3-4), 277-288.

Panza G.F., La Mura C., Peresan A., Romanelli F., Vaccari F., 2012. Seismic hazard scenarios as preventive tools for a disaster resilient society. Advances in Geophysics, 53, 93-165.

Panza G.F., Bela J., 2020. NDSHA: A new paradigm for reliable seismic hazard assessment. Engineering Geology, 275, 105403.

Panza G.F., Romanelli F., Vaccari F., 2001. Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation. In Advances in Geophysics. Elsevier, 43, 1-95.

Panza G.F., Kossobokov V.G., Laor E., De Vivo B., 2021(Eds). Earthquakes and sustainable infrastructure (1st Edition): Neodeterministic (NDSHA) approach guarantees prevention rather than cure. Elsevier, ISBN:9780128235416, 9780128235034, pp.672.

Panza G.F., Vaccari F., Costa G., Suhadolc P., Fäh D., 1996. Seismic input modelling for zoning and microzoning, Earthquake Spectra, 12, 529-566.

Parvez I.A., Romanelli F., Panza G.F., 2011. Long period ground motion at bedrock level in Delhi city from Himalayan earthquake scenarios. Pure Appl. Geophys., 168(3-4), 409-477.

Pondrelli S., Salimbeni S., Morelli A., Ekström G., Boschi E., 2007. European-Mediterranean regional centroid moment tensor catalog: solutions for years 2003 and 2004. Physics of the Earth and Planetary Interiors, 164(1-2), 90-112.

Radulian M., Vaccari F., Mandrescu N., Panza G.F., Moldoveanu C.L., 2000. Seismic hazard of Romania: deterministic approach. In Seismic hazard of the circum-Pannonian Region. Birkhäuser, Basel, 221-247.

Rugarli P., Vaccari F., Panza G.F., 2019b. Seismogenic nodes as a viable alternative to seismogenic zones and observed seismicity for the definition of seismic hazard at regional scale. Vietnam Journal of Earth Sciences, 41, 289-304

Stucchi M., et al., Sesetyan, K., 2013. The SHARE European earthquake catalogue (SHEEC) 1000-1899. Journal of Seismology, 17(2), 523-544.

Downloads

Published

30-07-2021

How to Cite

Brandmayr, E. ., Vaccari, F. ., Romanelli, F. ., Vlahovic, G., & Panza, G. F. (2021). Neo-deterministic seismic hazard maps of Kosovo. Vietnam Journal of Earth Sciences, 43(4), 399–408. https://doi.org/10.15625/2615-9783/16328

Issue

Section

Articles