Seismogenic nodes as a viable alternative to seismogenic zones and observed seismicity for the definition of seismic hazard at regional scale


  • Paolo Rugarli CASTALIA S.r.l., Via Pinturicchio, 24, 20133, Milano, Italy
  • Franco Vaccari Univ. di Trieste, Dip. di Matematica e Geoscienze, Trieste, Italy
  • Giuliano Panza 1. Accademia Nazionale dei Lincei, Roma, Italy 2. Earthquake Administration, Beijing, China 3. International Seismic Safety Organization (ISSO), Arsita, Italy 5. Beijing University of Civil Engineering and Architecture (BUCEA)



Seismogenic nodes, Seismogenic zones, Maximum Credible Earthquake, Neo Deterministic Seismic Hazard Assessment, Eurocodes


A fixed increment of magnitude is equivalent to multiply the seismic moment by a factor γEM related to the partial factor γq acting on the seismic moment representing the fault. A comparison is made between the hazard maps obtained with the Neo-Deterministic Seismic Hazard Assessment (NDSHA), using two different approaches: one based on the events magnitude, listed in parametric earthquake catalogues compiled for the study areas, with sources located within the seismogenic zones; the other uses the seismogenic nodes identified by means of pattern recognition techniques applied to morphostructural zonation (MSZ), and increases the reference magnitude by a constant amount tuned by the safety factor γEM.

Using γEM=2.0, in most of the territory the two approaches produce totally independent, comparable hazard maps, based on the quite long Italian catalogue. This represents a validation of the seismogenic nodes method and a tuning of the safety factor γEM at about 2.


Download data is not yet available.


A.A. V.V., 2000. Seismic hazard of the Circum-Pannonian region (G. F. Panza, M. Radulian and C.-Y. Trifu editors). Pure and Applied Geophysics Topical Volumes, Birkhouser, Basel, 157, 1–279.

Alekseevskaya M.A., Gabrielov A.M., Gvishiani A.D., Gelfand I.M., Ranzman E.Y., 1977. Formal morphostructural zoning of mountain territories. Journal of Geophysics, 43, 227–233.

Aoudia A., Vaccari F., Suhadolc P., Meghraoui M., 2000. Seismogenic potential and earthquake hazard assessment in the Tell Atlas of Algeria. Journal of Seismology, 4, 79–98.

Båth M., 1973. Introduction to Seismology, Birkhäuser Verlag, Basel.

Bela J., 2014. Too generous to a fault? Is reliable earthquake safety a lost art? Errors in expected human losses due to incorrect seismic hazard estimates. Earth’s Future, 2, 569–578. Doi: 10.1002/2013EF000225.

Burridge R., Knopoff L., 1964. Body force equivalents for seismic dislocations. Bulletin of the Seismological Society of America, 54, 1875–1888.

Burton P.W., 1979. Seismic risk in southern Europe through to India examined using Gumbel's third distribution of extreme values. Geophysical Journal of the Royal Astronomical Society, 59, 249–280.

Cancani A., 1904. Sur l'emploi d'une double échelle sismique des intensités, empirique et absolue. Gerlands Beiträge zur Geophysik, 2, 281–283.

Carminati E., Doglioni C., 2012. Alps vs Apennines: the paradigm of a tectonically asymmetric Earth. Earth Science Reviews, 112, 67–96. Doi: 10.1016/ j.earscirev.2012.02.004.

CEN EN 1990:2002. Eurocode-Basis of structural design, April 2002.

Chiou P., Miao W., 2013. The distribution of annual maximum earthquake magnitude in Southern California. Journal of Probability and Statistical Science, 11(2), 199–210.

Chu R., Zhu L., Helmberger D.V., 2009. Determination of earthquake focal depths and source time functions in central Asia using teleseismic P waveforms. Geophysical Research Letters, 36, L17317. Doi: 10.1029/2009GL039494.

CPTI Working Group, 2004. Catalogo Parametrico dei Terremoti Italiani, versione 2004 (CPTI04). Bologna, Italy.

D’Amico V., Albarello D., Mantovani E., 1999. A distribution-free analysis of magnitude-intensity relationships: an application to the Mediterranean region. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 24, 517–521.

Doglioni C., Panza G.F., 2015. Polarized plate tectonics. Advances in Geophysics, 56, 1–167.

Fasan M., Magrin A., Amadio, C., Romanelli, F., Vaccari, F., Panza, G.F., 2016. A seismological and engineering perspective on the 2016 Central Italy earthquakes. International Journal of Earthquake and Impact Engineering, 1, 395–420.

Field E.H., Jackson D.D., Dolan J.F., 1999. A mutually consistent seismic-hazard source model for Southern California. Bulletin of the Seismological Society of America, 89, 559–578.

Gelfand I.M., Guberman S.I., Izvekova M.L., Keilis-Borok V.I., Ranzman E.J., 1972. Criteria of high seismicity, determined by pattern recognition. Tectonophysics, 13, 415–422.

Gelfand I.M., Guberman Sh.A., Keilis-Borok V.I., Knopoff L., Press F., Ranzman I.Ya., Rotwain I.M., Sadovsky A.M., 1976. Pattern recognition applied to earthquake epicenters in California. Phys. Earth Planet. Inter., 11, 227–283.

Girdler R.W., McConnell D.A., 1994. The 1990 to 1991 Sudan earthquake sequence and the extent of the East African Rift System. Science, 264, 67–70.

Gorshkov A., Hassan H.M., Novikova O.V., 2019. Seismogenic nodes (M ≥ 5.0) in Northeast Egypt and implications for seismic hazard assessment. Pure and Applied Geophysics, 176, 593–610. Doi: 10.1007/s00024-018-2012-9.

Gorshkov A., Kossobokov V., Soloviev A., 2003. Recognition of Earthquake-Prone Areas. In V.I. Keilis-Borok and A.A. Soloviev (eds). Nonlinear Dynamics of the Lithosphere and Earthquake Prediction. Springer-Verlag, Berlin-Heidelberg, 239–310.

Gorshkov A., Novikova O., 2018. Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap. Acta Geophysica, 66, 843–853. Doi: 10.1007/s11600-018-0177-3, online ISSN 1895-7455.

Gorshkov A.I., Panza G.F., Soloviev A.A., Aoudia A., 2002. Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily. Journal of Seismology and Earthquake Engineering, 4, 1–24.

Gorshkov A.I., Panza G.F., Soloviev A.A., Aoudia A., 2004. Identification of seismogenic nodes in the Alps and Dinarides. Bollettino della Società Geologica Italiana, 123, 3–18.

Guidarelli M., Panza G.F., 2006. INPAR, CMT and RCMT seismic moment solutions compared for the strongest damaging events (M≥4.8) occurred in the Italian region in the last decade. Rendiconti dell’Accademia Nazionale delle Scienze detta dei XL, Memorie di Scienze Fisiche e Naturali, 30, 81–98.

Gulvanessian H., Calgaro J-A., Holicky M., 2002. Eurocode: basis of structural design, designers. Guide to Eurocodes. Thomas Telford.

Gumbel E., 1958 Statistics of extremes, Columbia University Press, New York, USA.

Gvishiani A.D., Soloviev A.A., 1981. Association of the epicenters of strong earthquakes with the intersections of morphostructural lineaments in South America, in Keilis-Borok, V.I. and Levshin, A.L. (Eds.). Interpretation of seismic data: methods and algorithms. Comput. Seismol., Allerton, New York, 13, 42–46.

Hanks T.C., Kanamori H., 1979. A moment magnitude scale. Journal of Geophysical Research, 84(5), 2348-2350.

Hassan H.M., Romanelli F., Panza G.F., El Gabry M.N., Magrin A., 2017. Update and sensitivity analysis of the neo-deterministic seismic hazard assessment for Egypt. Engineering Geology, 218, 77–89. Doi: 10.1016/j.enggeo.2017.01.006.

Houlié N., Woessner J., Giardini D., Rothacher M., 2018. Lithosphere strain rate and stress field orientations near the Alpine arc in Switzerland. Nature Scientific Reports, 8. Doi:10.1038/s41598-018-20253-z.

Hudnut K.W., Seeber L., Pacheco J., 1989. Cross-fault triggering in the November 1987 Superstition Hills earthquake sequence, Southern California. Geophysical Research Letters, 16, 199–202.

Kijko A., 2004. Estimation of the Maximum Earthquake Magnitude, mmax. Pure and Applied Geophysics, 161, 1–27. Doi: 10.1007/s00024-004-2531-4.

King G., 1986. Speculations on the geometry of the initiation a termination processes of earthquake rupture and its relation to morphology and geological structure. Pure and Applied Geophysics, 124, 567–583.

Kosobokov V.G., Mazhkenov S.A., 1994. On similarity in the spatial distribution of seismicity, in Chowdhury, D.K. (Ed.). Computational Seismology and Geodynamics, American Geophysical Union, Washington, D.C., 1, 6–15.

Kossobokov V.G., 1983. Recognition of the sites of strong earthquakes by Hamming’s method in East Central Asia and Anatolia, in Keilis-Borok, V.I. and Levshin, A.L. (Eds). Computational Seismology, Allerton Press, Inc., New-York, 14, 78–82.

Kronrod T.L., Molchan G.M., Podgaetskaya V.M., Panza G.F., 2002. Formalized representation of isoseismal uncertainty for Italian earthquakes. Bollettino di Geofisica Teorica ed Applicata, 41, 243–313.

Lliboutry L., 2000. Quantitative geophysics and geology, Springer-Verlag, London, UK, ISBN 978-1-85233-115-3.

Magrin A., Peresan A., Kronrod T., Vaccari F., Panza, G.F., 2017. Neo-deterministic seismic hazard assessment and earthquake occurrence rate. Engineering Geology, 229, 95–109.

Malusà M.G., Frezzotti M.L., Ferrando S., Brandmayr E., Romanelli F., Panza G.F., 2018. Active carbon sequestration in the Alpine mantle wedge and implications for long-term climate trends. Nature Scientific Reports, 8, 4740. Doi:10.1038/s41598-018-22877-7.

Meletti C., Galadini F., Valensise G., Stucchi M., Basili R., Barba S., Vannucci G., Boschi E., 2008. A seismic source zone model for the seismic hazard assessment of the Italian territory. Tectonophysics, 450, 85–108.

Michetti A., Giardina F., Livio F., Mueller K., Serva L., Sileo G., Vittori E., Devoti R., Riguzzi F., Carcano C., Rogledi S., Bonadeo L., Brunamonte F., Fioraso G., 2012. Active compressional tectonics, Quaternary capable faults, and the seismic landscape of the Po Plain (Northern Italy). Annals of Geophysics, 55, 969–1001. Doi: 10.4401/ag-5462.

Molchan G., Kronrod T., Panza G.F., 1997. Multi-scale seismicity model for seismic risk. Bulletin of the Seismological Society of America, 87, 1220–1229.

PAGEOPH Topical Volume 168, 2011. Advanced seismic hazard assessment, Vol. 1 and Vol. 2, Editors: Panza G.F., Irikura K., Kouteva-Guentcheva M., Peresan A., Wang Z. and Saragoni R., Pure and Applied Geophysics, Birkhäuser, Basel, Switzerland, Vol. 1, ISBN 978-3-0348-0039-6,, Vol. 2, ISBN 978-3-0348-0091-4,

Panza G.F., Kossobokov V., Peresan A., Nekrasova A., 2014. Why are the standard probabilistic methods of estimating seismic hazard and risks too often wrong. Earthquake Hazard, Risk, and Disasters, pp 309–357. Doi: 10.1016/B978-0-12-394848-9.00012-2. ISBN: 978-0-12-394848-9.

Panza G.F., La Mura C., Peresan A., Romanelli F., Vaccari F., 2012. Seismic hazard scenarios as preventive tools for a disaster resilient society. Advances in Geophysics, 53, 93–165.

Panza G.F., Raykova R.B., 2008. Structure and rheology of lithosphere in Italy and surrounding. Terra Nova, 20, 194–199.

Panza G.F., Romanelli F., Vaccari F., 2001. Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to seismic zonation. Advances in Geophysics, 43, 1–95.

Panza G.F., Saraò A., 2000. Monitoring volcanic and geothermal areas by full seismic moment tensor inversion: are non-double couple components always artifacts modeling?. Geophysical Journal International, 143, 353–364.

Parvez I.A., Magrin A., Vaccari F., Ashish Mir R.R., Peresan A., Panza G.F., 2017. Neo-deterministic seismic hazard scenarios for India-a preventive tool for disaster mitigation. Journal of Seismology, 21, 1559–1575.

Peresan A., Gorshkov A., Soloviev A., Panza G.F., 2015. The contribution of pattern recognition of seismic and morphostructural data to seismic hazard assessment. Bollettino di Geofisica Teorica ed Applicata, 56, 295–328.

Peresan A., Zuccolo E., Vaccari F., Gorshkov A., Panza G.F., 2011. Neo-deterministic seismic hazard and pattern recognition techniques: time-dependent scenarios for North-Eastern Italy. Pure and Applied Geophysics, 168, 583–607.

Rugarli P., Amadio C., Peresan A., Fasan M., Vaccari F., Magrin A., Romanelli F., Panza G.F., 2019. Neo-deterministic scenario-earthquake accelerograms and spectra: a NDSHA approach to seismic analysis, in: Jia, J. and Paik, J.K (Eds) Structural Engineering in Vibrations, Dynamics and Impacts, CRC press, Taylor & Francis Group, Abingdon, UK, 187–241.

Saraò A., Panza G.F., Privitera E., Cocina O., 2001. Non-double couple mechanisms in the seismicity preceding 1991–1993 Etna volcano eruption. Geophysical Journal International, 145, 319–335.

Soloviev A.A., Gvishiani A.D., Gorshkov A.I., Dobrovolsky M.N., Novikova O.V., 2014. Recognition of earthquake-prone areas: methodology and analysis of the results, Izvestiya, Physics of the Solid Earth, 50, 151–168.

Talwani P., 1988. The intersection model for intraplate earthquakes. Seismological Research Letters, 59, 305–310.

Talwani P., 1999. Fault geometry and earthquakes in continental interiors. Tectonophysics, 305, 371–379.

Vorobieva I.A., Panza G.F., 1993. Prediction of the occurrence of related strong earthquakes in Italy. Pure and Applied Geophysics, 141, 25–41.

Walters R.J., Gregory L.C., Wedmore L.N.J., Craig T.J., McCaffrey K., Wilkinson M., Chen J., Li Z., Elliott J.R., Goodall H., Iezzi F., Livio F., Michetti A.M., Roberts G., Vittori E., 2018. Dual control of fault intersections on stop-start rupture in the 2016 Central Italy seismic sequence. Earth and Planetary Science Letters, 500, 1–14.

Wells D.L., Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

Wyss M., Nekrasova A., Kossobokov V., 2012. Errors in expected human losses due to incorrect seismic hazard estimates. Natural Hazards, 62, 927–935.

Zuccolo E., Vaccari F., Peresan A., Panza G.F., 2011. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparison over the Italian Territory. Pure and Applied Geophysics, 168, 69–83.




How to Cite

Rugarli, P., Vaccari, F., & Panza, G. (2019). Seismogenic nodes as a viable alternative to seismogenic zones and observed seismicity for the definition of seismic hazard at regional scale. Vietnam Journal of Earth Sciences, 41(4), 289–304.