The first Vietnam School of Earth Observation: Atmospheric Remote Sensing and Molecular Spectroscopy

Tran Ha, Arnaud Cuisset, Sébastien Payan, Martin Schwell, Yao Té, Linda Tomasini, Yannick Giraud- Héraud
Author affiliations

Authors

  • Tran Ha Laboratoire de Météorologie Dynamique, IPSL, CNRS, Sorbonne Université, École normale supérieure, PSL Research University, École polytechnique, F-75005 Paris, France
  • Arnaud Cuisset Laboratoire de Physico-Chimie de l′Atmosphère (LPCA) EA 4493, Université Littoral Côte d′Opale, 59140 Dunkerque, France
  • Sébastien Payan LATMOS/IPSL, UPMC University Paris 06 Sorbonne Universités, Paris 06, CNRS, 75252 Paris CEDEX 05, France
  • Martin Schwell LISA UMR CNRS 7583, Université Paris Est Créteil and Université Paris Diderot, Institut Pierre Simon Laplace, 61 Avenue du Général de Gaulle, 94010 Créteil, France
  • Yao Té LERMA-IPSL, Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, F-75005, Paris, France
  • Linda Tomasini Centre National d’Etudes Spatiales, Toulouse, France
  • Yannick Giraud- Héraud Astroparticule et Cosmologie - Paris, Université Paris Diderot, 75205 Paris, France

DOI:

https://doi.org/10.15625/0866-7187/41/2/13724

Keywords:

Molecular spectroscopy, atmospheric remote sensing, radiative transfer

Abstract

In this review paper, we give an introduction to molecular spectroscopy and its relation to atmospheric remote sensing and examples of recent developments in spectroscopic experimental techniques and modelling. Atmospheric retrieval techniques, based on radiative transfer theories and molecular spectroscopy as well as some atmospheric remote sensing missions using spectroscopic techniques are presented. 

Downloads

Download data is not yet available.

References

Berman P.R., 1972. Speed-dependent collisional width and shift parameters in spectral profiles. Journal of Quantitative Spectroscopy & Radiative Transfer, 12, 1331.

Bray C., Cuisset A., Hindle F., Bocquet R., Mouret G., Drouin B.J., 2017b. CH3D photomixing spectrosco-py up to 2.5 THz: New set of rotational and dipole parameters, first THz self-broadening measurements. Journal of Quantitative Spectroscopy & Radiative Transfer, 189, 198–205.

Bray C., Cuisset A., Hindle F., Mouret G., Bocquet R., Boudon V., 2017. Spectral lines of methane measured up to 2.6 THz at sub-MHz accuracy with a CW-THz photomixing spectrometer: Line positions of rotational transitions induced by centrifugal distortion. Journal of Quantitative Spectroscopy & Radiative Transfer, 203, 349–354.

Bruker, https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy/ft-ir-research-spectrometers/ifs-125hr/overview.html. https://www.bruker.com/products/infrared-near-infrared-and-raman-spectroscopy/ft-ir-research-spectrometers/ifs-125hr/overview.html.">

Clerbaux C., et al., 2009. Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder. Atmospheric Chemistry and Physics, 9, 6041–6054.

Dicke R.H., 1953. The effect of collision upon the Dop-pler width of spectral lines. Phys Rev, 89, 472.

Ehret G., Bousquet P., Pierangelo C., Alpers M., Millet B., Abshire J., Bovensmann H., Burrows J., Cheval-lier F., Ciais P., Crevoisier C., Fix A., Flamant P., Frankenberg C., Gibert F., Heim B., Heimann M., Houweling S., Hubberten H., Jöckel P., Law K., Löw A., Marshall J., Augusti-Panareda A., Payan S., Prigent C., Rairoux P., Sachs T., Scholze M., Wirth M., 2017. MERLIN: A French-German space lidar mission dedicated to atmospheric methane, Remote Sensing, 9(10), 1052. Doi:10.3390/rs9101052. from spectra in the 1.6 and 2.1 µm regions. Atmos Chem Phys, 9, 7303–7312.

Goody R.M., Yung Y.L., 1996. Atmospheric Radiation: Theoretical Basis. Oxford University Press (Second Edition), ISBN 978-0-19-510291-8, 534p.

Gordon I.E., et al., 2017. The HITRAN2016 molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative Transfer, 203, 3–69.

GOSAT (Greenhouse gases Observing SATellite)/ Ibuki. https://directory.eoportal.org/web/eoportal/satellite-missions/g/gosat, and references therein. https://directory.eoportal.org/web/eoportal/satellite-missions/g/gosat, and references therein.">

Grau E., Gastellu-Etchegorry J.-P., 2013. Radiative transfer modeling in the Earth-Atmosphere system with DART model, Remote Sensing of Environment, 139, 149–170.

Hadji-Lazaro J., Clerbaux C., Thiria S., 1999. An inver-sion algorithm using neural networks to retrieve at-mospheric CO total columns from high-resolution nadir radiances, J. Geophys. Res., 104 (D19), 23841–23854.

Hartmann J.-M., Boulet C., Robert D., 2008. Collisional effects on molecular spectra: Experiments and mod-els, consequences for applications. Elsevier, Am-sterdam.

Hartmann J.-M., Tran H., Armante R., Boulet C., Cam-pargue A., Forget F., Gianfrani L., Gordon I., Guerlet S., Gustafsson M., Hodges J. T., Kassi S., Lisak D., Thibault F., Toon G. C., 2018. Recent advances in collisional effects on spectra of molecular gases and their practical consequences. Journal of Quantitative Spectroscopy & Radiative Transfer, 213, 178–227.

Hartmann J.-M., Tran H., Toon G.C., 2009. Influence of line mixing on the retrievals of atmospheric CO2 Hase F., Hannigan J. W., Coey M. T., Goldman A., Höpfner M., Jones N. B., Rinsland C. P., Wood S. W., 2004. Intercomparison of retrieval codes used for the analysis of high-resolution: ground-based FTIR measurements. Journal of Quantitative Spec-troscopy & Radiative Transf, 87, 25–52.

Hindle F., Bray C., Hickson K., Fontanari D., Mouelhi M., Cuisset A., Mouret G., Bocquet R., 2017. Chirped Pulse Spectrometer Operating at 200 GHz. J. Infrared Milli Terahz Waves, 39, 105–119.

Janssen C., Boursier C., Jeseck P., Té Y., 2016. Line parameter study of ozone at 5 and 10 µm using at-mospheric FTIR spectra from the ground: A spectro-scopic database and wavelength region comparison. Journal of Molecular Spectroscopy, 326, 48–59.

Lary D.J., Alavi A.H., Gandomi A.H., Walker A.L., 2016. Machine learning in geosciences and remote sensing. Geoscience Frontiers, 7(1), 3–10.

Le T., Fissiaux L., Lepère M., Tran H., 2016. Isolated line shape of methane with various collision partners. J Quant Spectrosc Rad Transf, 185, 27–36.

Liou K.-N., 2002. An introduction to atmospheric radia-tion, Amsterdam; Boston: Academic Press. Interna-tional geophysics series, ISBN 0-12-451451-0, 84, 583p.

Martin-Drumel M.A., Eliet S., Pirali O., Guinet M., Hindle F., Mouret G., Cuisset A., 2012. New inves-tigation on THz spectra of OH and SH radicals (X-2 Pi(i)). Chem. Phys. Lett., 550, 8–14.

Martin-Drumel M.A., Roucou A., Brown G.G., Thor-wirth S., Pirali O., Mouret G., Hindle F., McCarthy M.C., Cuisset A., 2016. High-resolution spectrosco-py of six SOCl2 isotopologues from the microwave to the far-infrared. Journal of Chemical Physics, 144, 084305.

MicroCarb (Carbon Dioxide Monitoring Mission). https://directory.eoportal.org/web/eoportal/satellite-missions/m/microcarb, and references therein. https://directory.eoportal.org/web/eoportal/satellite-missions/m/microcarb, and references therein.">

Miller C.E., Brown L.R., Toth R.A., Benner D.C., Devi V.M., 2005. Spectroscopic challenges for high accu-racy retrievals of atmospheric CO2 and the Orbiting Carbon Observatory (OCO) experiment. C R Phys., 6, 876–887.

Miller C.E., et al., 2007. Precision requirements for space-based data. J Geophys Res 112, Doi: 10.1029/2006JD007659.

Mouret G., Guinet M., Cuisset A., Croizé L., Eliet S., Bocquet R., Hindle F., 2013. Versatile Sub-THz Spectrometer for Trace Gas Analysis, I.E.E.E. Sen-sors, 13, 133–138.

NDACC, Network for the Detection of Atmospheric Composition Change - Infrared Working Group. https://www2.acom.ucar.edu/irwg. https://www2.acom.ucar.edu/irwg.">

Ngo N.H., Lisak D., Tran H., Hartmann J.-M., 2013. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes. J Quant Spectrosc Rad Transf, 129, 89–100.

OCO-2 (Orbiting Carbon Observatory-2). https://directory.eoportal.org/web/eoportal/satellite-missions/o/oco-2, and references therein. https://directory.eoportal.org/web/eoportal/satellite-missions/o/oco-2, and references therein.">

Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., 1992. Numerical Recipies in fortran (second edition), Cambridge University Press, Cambridge.

Rodgers C.D., 2000. Inverse methods for atmospheric sounding: theory and practice, World Scientific, Singapore.

Roucou A., Dhont G., Cuisset A., Martin-Drumel M.A., Thorwirth S., Fontanari D., Meerts L. W., 2017. High-resolution study of the rovibrational funda-mental bands of thionyl chloride: Interplay of an evolutionary algorithm and a line-by-line analysis. J. Chem. Phys., 147, 054303.

Roucou A., Fontanari D., Dhont G., Jabri A., Bray C., Hindle F., Mouret G., Bocquet R., Cuisset A., 2018. Full Conformational Landscape of 3-Methoxyphenol Revealed by Room Temperature mm-wave Rotational Spectroscopy Supported by Quantum Chemical Calculations. Chem. Phys. Chem, 19, 1–8.

SFIT,https://wiki.ucar.edu/display/sfit4/Infrared+Working+Group+Retrieval+Code%2C+SFIT https://wiki.ucar.edu/display/sfit4/Infrared+Working+Group+Retrieval+Code%2C+SFIT">

Stamnes K., Thomas G.E., Stamnes J.J., 2017. Radiative Transfer in the Atmosphere and Ocean by Knut Stamnes. Cambridge Core.

TCCON, Total Carbon Column Observing Network. https://tccon-wiki.caltech.edu/. https://tccon-wiki.caltech.edu/.">

Té Y., Dieudonné E., Jeseck P., Hase F., Hadji-Lazaro J., Clerbaux C., Ravetta F., Payan S., Pépin I., Hurtmans D., Pelon J., Camy-Peyret C., 2012. Carbon monoxide urban emission monitoring: a ground-based FTIR case study. J. Atmos. Oceanic Technol., 29, 911–921.

Té Y., Jeseck P., Franco B., Mahieu E., Jones N.B., Paton-Walsh C., Griffith D.W.T., Buchholz R.R., Hadji-Lazaro J., Hurtmans D., Janssen C., 2016. Seasonal variability of surface and column carbon monoxide over megacity Paris, high altitude Jungfraujoch and Southern Hemispheric Wollongong stations. Atmos. Chem. Phys., 16, 10911–10925.

Té Y., Jeseck P., Payan S., Pépin I., Camy-Peyret C., 2010. The Fourier transform spectrometer of the UPMC University QualAir platform. Rev. Sci. In-strum., 81, 103102.

Tennyson J., Bernath P.F., Campargue A., Csaszar A. G., Daumont L., Gamache R.R., Hodges J.T., Lisak D., Naumenko O.V., Rothman L.S., Tran H., Zobov N.F., Buldyreva J., Boone D.C., Hartmann J.-M., McPheat R., Weidmann D., Murray J., Ngo N.H., Polyansky O.L., 2014. Recommended isolated-line profile for representing high-resolution spectroscopic transitions. Pure Appl Chem, 86, 1931–1943.

Wunch D., Toon G.C., Sherlock V., Deutscher N.M., Liu X., Feist D.G., Wennberg P.O., 2015. The total carbon column observing network’s ggg2014 data version. Doi: 10.14291/tccon.ggg2014.documentation.R0/1221662. 37, 45, 55, 95, 125.

Wunch D., et al., 2017. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measure-ments with TCCON. Atmos. Meas. Tech., 10, 2209–2238.

Zhakarenko O., Motiyenko R.A., Avilès-Moreno J.R., Jabri A., Kleiner I., Huet T.R., 2016. Torsion-rotation-vibration effects in the ground and first ex-cited states of methacrolein, a major atmospheric oxydation product of isoprene. J. Chem. Phys., 144, 024303.

Downloads

How to Cite

Ha, T., Cuisset, A., Payan, S., Schwell, M., Té, Y., Tomasini, L., & Héraud, Y. G.-. (2019). The first Vietnam School of Earth Observation: Atmospheric Remote Sensing and Molecular Spectroscopy. Vietnam Journal of Earth Sciences, 41(2), 138–155. https://doi.org/10.15625/0866-7187/41/2/13724

Issue

Section

Articles