Metagenomics analysis of marine eukaryotic community in water and sediments at Lang Co - Da Nang sea by throughput 18S rRNA gene sequencing

Authors

  • Tran Dinh Man Institute of Biotechnology, VAST, Vietnam
  • Nguyen Kim Thoa Institute of Biotechnology, VAST, Vietnam
  • Nguyen Quoc Viet Institute of Biotechnology, VAST, Vietnam
  • Phan Thi Tuyet Minh Institute of Biotechnology, VAST, Vietnam
  • Pham Thanh Ha Institute of Biotechnology, VAST, Vietnam
  • Tran Thanh Thuy Institute of Biotechnology, VAST, Vietnam
  • Hoa Minh Tu Institute of Biotechnology, VAST, Vietnam
  • Le Thi Thanh Xuan Institute of Biotechnology, VAST, Vietnam
  • Bui Thanh Mai Institute of Biotechnology, VAST, Vietnam

DOI:

https://doi.org/10.15625/1859-3097/15260

Abstract

The present study applied metagenomics to characterize the diversity and relative occurrence of eukaryotic organisms in the sea water (LC05.W and LCDN.W) and sediment (LC05.S and LCDN.S) samples collected at the Lang Co - Da Nang sea in two years 2016 and 2017. The marine DNA metagenomes from water and sediments were isolated and analyzed by using specific primer 18S V4: 528F-706R with the barcode for gene-based metagenomic approach. Total tags were 374,336 (92,864 in LC05.W; 95,742 in LCDN.W; 86,593 in LC05.S and 91,385 in LCDN.S samples) and clustered at a 97% similarity into 5,204 unique operational taxonomic units (936 in LC05.W; 1631 in LCDN.W; 2,259 in LC05.S and 1,631 in LCDN.S). The taxonomic profile obtained by comparison with SILVA SSU database showed predominance of the kingdom: Eukaryote domain (61% in LC05.W; 32% in LCDN.W; 43% in LC05.S and 69% in LCDN.S); Metazoa (26% in LC05.W; 22% in LCDN.W; 37% in LC05.S and 19% in LCDN.S). Fungi in samples collected in 2017 (31% in LCDN.W and 10% in LCDN.S) were dominant as compared to 2016 (6.0% in LC05.W and 0.6% in LC05.S). In addition, 0.4% and 10.0% in water and 19% and 2% in sediment sequences were unclassified. Protalveolata, Annelida, Chlorophyta, Nematoda, Arthropoda, Rotifera, Ascomycota, Diatomea were top ten at the phylum level in Lang Co - Da Nang sea water and sediments. The abundance distribution of 35 dominant genera among all samples was displayed in the species abundance heatmap. The taxonomic assignment based on 18S ribosomal sequences with the SSU base possibly showed the presence of eukaryotic species (191 in LC05.W; 320 in LC05.S; 278 in LCDN.W and 207 in LCDN.S) in the marine water and sediments collected at Lang Co - Da Nang sea.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

[1] Boxshall, G. A., Mees, J., Costello, M. J., Hernandez, F., Gofas, S., Hoeksema, B. W., ... and Gittenberger, A., 2015. World register of marine species. Available at h ttp://www. marinespecies. org. (accessed 17 October 2015).

[2] Appeltans, W., Ahyong, S. T., Anderson, G., Angel, M. V., Artois, T., Bailly, N., ... and Costello, M. J., 2012. The magnitude of global marine species diversity. Current Biology, 22(23), 2189–2202. https://doi.org/10.1016/j.cub.2012.09.036.

[3] Jefferson, T. A., and Rosenbaum, H. C., 2014. Taxonomic revision of the humpback dolphins (Sousa spp.), and description of a new species from Australia. Marine Mammal Science, 30(4), 1494–1541. https://doi.org/10.1111/mms.12152.

[4] De Ley, P., 2000. Lost in worm space: phylogeny and morphology as road maps to nematode diversity. Nematology, 2(1), 9–16. https://doi.org/10.1163/1568541005 08854.

[5] Wägele, H., Klussmann-Kolb, A., Kuhlmann, M., Haszprunar, G., Lindberg, D., Koch, A., and Wägele, J. W., 2011. The taxonomist-an endangered race. A practical proposal for its survival. Frontiers in Zoology, 8(1), 1–7. https://doi.org/10.1186/1742-9994-8-25.

[6] Hajibabaei, M., 2012. The golden age of DNA metasystematics. Trends in Genetics, 28(11), 535–537. https://doi.org/10.1016/j.tig.2012.08.001.

[7] Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R., 2011. UniFrac: an effective distance metric for microbial community comparison. The ISME Journal, 5(2), 169–172. https://doi.org/10.1038/ismej.2010.133.

[8] Avershina, E., Frisli, T., and Rudi, K., 2013. De Novo Semi-Alignment of 16S rRNA Gene Sequences for Deep Phylogenetic Characterization of Next Generation Sequencing Data. Microbes and Environments, 28(2), 211–216. DOI: 10.1264/jsme2.me12157.

[9] Magoč, T., and Salzberg, S. L., 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics, 27(21), 2957–2963. https://doi.org/10.1093/bioinformatics/btr507.

[10] Bokulich, N. A., Subramanian, S., Faith, J. J., Gevers, D., Gordon, J. I., Knight, R., Mills, D. A., and Caporaso, J. G., 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1), 57–59. https://doi.org/10.1038/nmeth.2276.

[11] Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight, R., 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 7(5), 335–336. https://doi.org/10.1038/nmeth.f.303.

[12] Edgar, R. C., 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998. https://doi.org/10.1038/nmeth.2604.

[13] Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., Owens, S. M., Betley, J., Fraser, L., Bauer, M., Gormley, N., Gilbert, J. A., Smith, G., and Knight, R., 2012. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8), 1621–1624. https://doi.org/10.1038/ismej.2012.8.

[14] Fonseca, V. G., Carvalho, G. R., Nichols, B., Quince, C., Johnson, H. F., Neill, S. P., Lambshead, J. D., Thomas, W. K., Power, D. M., and Creer, S., 2014. Metagenetic analysis of patterns of distribution and diversity of marine meiobenthic eukaryotes. Global Ecology and Biogeography, 23(11), 1293–1302. https://doi.org/10.1111/geb.12223.

[15] Brannock, P. M., Waits, D. S., Sharma, J., and Halanych, K. M., 2014. High-throughput sequencing characterizes intertidal meiofaunal communities in northern Gulf of Mexico (Dauphin Island and Mobile Bay, Alabama). The Biological Bulletin, 227(2), 161–174.

[16] Bik, H. M., Sung, W. A. Y., De Ley, P., Baldwin, J. G., Sharma, J., Rocha‐Olivares, A. X. A. Y. Á. C. A. T. L., and Thomas, W. K., 2012. Metagenetic community analysis of microbial eukaryotes illuminates biogeographic patterns in deep‐sea and shallow water sediments. Molecular Ecology, 21(5), 1048–1059. https://doi.org/10.1111/j.1365-294X.2011.05297.x.

[17] Cowart, D. A., Pinheiro, M., Mouchel, O., Maguer, M., Grall, J., Miné, J., and Arnaud-Haond, S., 2015. Metabarcoding is powerful yet still blind: a comparative analysis of morphological and molecular surveys of seagrass communities. PloS One, 10(2), e0117562. https://doi.org/10.1371/journal.pone.0117562.

[18] Lallias, D., Hiddink, J. G., Fonseca, V. G., Gaspar, J. M., Sung, W., Neill, S. P., Barnes, N., Ferrero, T., Hall, N., Lambshead, P. J. D., Packer, M., Thomas, W. K., and Creer, S., 2015. Environmental metabarcoding reveals heterogeneous drivers of microbial eukaryote diversity in contrasting estuarine ecosystems. The ISME Journal, 9(5), 1208–1221. https://doi.org/10.1038/ismej.2012.8.

[19] Pearman, J. K., and Irigoien, X., 2015. Assessment of zooplankton community composition along a depth profile in the central Red Sea. PLoS One, 10(7), e0133487. https://doi.org/10.1371/journal.pone.0133487.

[20] Fisher, R., Radford, B. T., Knowlton, N., Brainard, R. E., Michaelis, F. B., and Caley, M. J., 2011. Global mismatch between research effort and conservation needs of tropical coral reefs. Conservation Letters, 4(1), 64–72. https://doi.org/10.1111/j.1755-263X.2010.00146.x.

[21] Lozupone, C. A., Hamady, M., Kelley, S. T., and Knight, R., 2007. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Applied and Environmental Microbiology, 73(5), 1576–1585. Doi: 10.1128/AEM.01996-06.

[22] Not, F., del Campo, J., Balagué, V., de Vargas, C., and Massana, R., 2009. New insights into the diversity of marine picoeukaryotes. PloS One, 4(9), e7143. https://doi.org/10.1371/journal.pone.0007143.

[23] Tran Dinh Man, Nguyen Kim Thoa, Nguyen Quoc Viet, Nguyen Huy Hoang and Nguyen Van Tung, 2018. Determination of microfungal diversity in Hai Tien sea water from sequencing data of 18s rRNA metagenome. Proceedings of National Biotechnology Conference. Publishing House for Science and Technology, Hanoi. pp. 938–945. (in Vietnamese).

Downloads

Published

31-03-2021

How to Cite

Man, T. D., Thoa, N. K., Viet, N. Q., Minh, P. T. T., Ha, P. T., Thuy, T. T., Tu, H. M., Xuan, L. T. T., & Mai, B. T. (2021). Metagenomics analysis of marine eukaryotic community in water and sediments at Lang Co - Da Nang sea by throughput 18S rRNA gene sequencing. Vietnam Journal of Marine Science and Technology, 21(1), 85–94. https://doi.org/10.15625/1859-3097/15260

Issue

Section

Articles