Comparison of optical features in nitrobenzene-core photonic crystal fiber with hexagonal and square lattices in the claddings

Trong Dang Van, Bao Tran Le Tran, Ben Chu Van, Lanh Chu Van
Author affiliations

Authors

DOI:

https://doi.org/10.15625/0868-3166/21873

Keywords:

Photonic crystal fibers (PCFs), hexagonal lattice, square lattice, supercontinuum generation (SCG), dispersion

Abstract

This paper proposes two novel photonic crystal fibers (PCFs) with a nitrobenzene core, designed using hexagonal and square lattice structures. The characteristics of the PCFs were numerically analyzed in detail and compared to selecting the proposed optimal structure for supercontinuum generation. This study investigates the influence of core diameter (DC) on the characteristics of PCF. The fiber’s nonlinear properties are significantly enhanced by varying the core diameter. The hexagonal PCF structures provide flatter dispersion curves and are closer to zero dispersion than the square lattice, which is beneficial for supercontinuum generation. In contrast, the square PCF structures show higher nonlinear coefficients and lower attenuation than the corresponding hexagonal structures. Based on the simulation results, six optimized structures with all-normal and anomalous dispersion were selected to study the characteristics at the pump wavelength. Results indicate that the proposed PCFs exhibit near-zero flat dispersion, low attenuation and high nonlinearity. The selected optimal structures show potential for efficient supercontinuum generation, enabling broad and highly coherent spectra.

Downloads

Metrics

PDF views
2

References

1. J. C. Knight, T. A. Birks, P. St. J. Russell and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (2020) 1547.

2. T. A. Birks, J. C. Knight and P. St. J. Russell, Endlessly single-mode photonic crystal fiber, Opt. Lett. 22 (1997) 961.

3. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth and P. St. J. Russell, Anomalous dispersion in photonic crystal fiber, IEEE Photon. Technol. Lett. 12 (200) 807– 809.

4. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks and P. St. J. Russell, Highly birefringent photonic crystal fibers, Opt. Lett. 25 (2000) 1325.

5. V. Finazzi, T. M. Monro and D. J. Richardson, Small-core silica holey fibers: nonlinearity and confinement loss trade-offs, J. Opt. Soc. Am. B 20 (2003) 1427.

6. W. J. Wadsworth, A. O. Blanch, J. C. Knight, T. A. Birks, T. P. M. Man and P. St. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, Journal of the Optical Society of America B 19 (2002) 2148.

7. S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang and S. R. Keiding, IR microscopy utilizing intense supercontinuum light source, Opt. Express 20 (2012) 4887.

8. K. Ke, C. Xia, M. N. Islam, M. J. Welsh and M. J. Freeman, Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser, Opt. Express 17 (2009) 12627.

9. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd et al., Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett. 43 (2018) 999.

10. B. Liu, M. Hu, X. Fang, Y. Wu, Y. Song, L. Chai, C. Wang and A. Zheltikov, High-power wavelength-tunable photonic-crystal-fiberbased oscillator-amplifier-frequency-shifter femtosecond laser system and its applications for material microprocessing, Laser Phys. Lett. 6 (2009) 44.

11. T. Udem, R. Holzwarth, and T. W. Hänsch, Optical frequency metrology, Nature 416 (2002) 233.

12. R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic, M. Franczyk and M. R. Taghizadeh, Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass, Laser Phys. Lett. 8 (2011) 443.

13. J. K. Ranka, R. S. Windeler, and A. J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm, Opt. Lett. 25 (2000) 25.

14. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton and S. Coen, Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping, J. Opt. Soc. Am. B 19 (2002) 765.

15. K. D. Xuan, L. C. Van, Q. H. Dinh, L. V. Xuan, M. Trippenbach and R. Buczynski, Dispersion characteristics of a suspended-core optical fiber infiltrated with water, Appl. Opt. 56 (2017) 1012.

16. H. V. Le, V. L. Cao, H. T. Nguyen, A. M. Nguyen, R. Buczyński and R. Kasztelanic, Application of ethanol infiltration for ultraflattened normal dispersion in fused silica photonic crystal fibers, Laser Phys. 28 (2018) 115106.

17. P. Zhao, M. Reichert, S. Benis, D. J. Hagan and E. W. V. Stryland, Temporal and polarization dependence of the nonlinear optical response of solvents, Optica 5 (2018) 583.

18. R. Zhang, J. Teipel and H. Giessen, Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation, Opt. Express 14 (2006) 6800.

19. R. Raei, M. Ebnali-Heidari, and H. Saghaei, Supercontinuum generation in organic liquid-liquid core-cladding photonic crystal fiber in visible and near-infrared regions, J. Opt. Soc. Am. B 35 (2018) 323.

20. L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. X. Dinh, M Trippenbach et al., Supercontinuum generation in photonic crystal fibers with core filled with toluene, J. Opt. 19 (2017) 125604.

21. L. C. Van and T. D. Van, Broadband supercontinuum generation with low peak power in controllable C7H8-core photonic crystal fibers of characteristic quantities, Indian J. Phys. 3 (2023) 1061.

22. C.V. Lanh, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc et al., Optimization of optical properties of photonic crystal fibers infiltrated with chloroform for supercontinuum generation, Laser Phys. 29 (2019) 075107.

23. L. C. Van, V. T. Hoang, V. C. Long, K. Borzycki, K. D. Xuan, V. T. Quoc et al., Supercontinuum generation in photonic crystal fibers infiltrated with nitrobenzene, Laser Phys. 30 (2020) 035105.

24. T. D. Van and L. C. Van, Supercontinuum generation in C6H5NO2-core photonic crystal fibers with various air-hole size, Mod. Phys. Lett. B 37 (2023) 2350063.

25. V. T. Dang and V. L. Chu, Design and optimization of C6H5NO2-core photonic crystal fibers of broadband supercontinuum generation with low peak power, Cryst. Res. Technol. 58 (2023) 2300085.

26. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood and N. Peyghambarian, Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2, Opt. Mat. Express 3 (2013) 1358.

27. L.C. Van, B. T. L. Tran, T. D. Van, N. V. T. Minh, T. N. Thi, H. P. N. Thi et al., Supercontinuum generation in highly birefringent fiber infiltrated with carbon disulfide, Opt. Fiber Technol. 75 (2023) 103151.

28. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region, Opt. Mat. Express 2 (2012) 1588.

29. H. Odhner, D. T. Jacobs, Refractive index of liquid D2O for visible wavelengths, J. Chem. Eng. Data 57 (2102) 166.

30. A. S. L. Gomes, E. L. Falcão-Filho, C. B. de Araújo, D. Ratativa, and R. E. de Araújo, Thermally managed eclipse Z-scan, Opt. Express 15 (2007) 1712.

31. C. Z. Tan, Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223 (1998) 158-163.

32. P. Dhara and V. K. Singh, Investigation of rectangular solid-core photonic crystal fiber as temperature sensor, Microsyst. Technol. 27 (2021) 127.

33. A. M. Maili, I. Yakasai, P. E. Abas, M. M. Nauman, R. A. Apong et al., Design and simulation of photonic crystal fiber for liquid sensing, Photonics 8 (2021) 16.

34. H. V. Le, V. T. Hoang, H. T. Nguyen, V. C. Long, R. Buczynski and R. Kasztelanic, Supercontinuum generation in photonic crystal fibers infiltrated with tetrachloroethylene, Opt. Quant. Electron. 53 (2021) 187.

35. V. T. Hoang, R. Kasztelanic, A. Filipkowski, G. Ste˛pniewski, D. Pysz, M. Klimczak et al., Supercontinuum generation in an all-normal dispersion large core photonic crystal fiber infiltrated with carbon tetrachloride, Opt. Mater. Exp. 9 (2019) 2264.

36. G.P. Agrawal, Nonlinear Fiber Optics, Academic Press, Elsevier, 2013.

37. C.Z. Tan, Determination of refractive index of silica glass for infrared wavelengths by IR spectroscopy, J. Non-Cryst. Solids 223 (1998) 158.

Downloads

Published

03-02-2025

How to Cite

[1]
T. Dang Van, B. T. Le Tran, B. Chu Van, and L. Chu Van, “Comparison of optical features in nitrobenzene-core photonic crystal fiber with hexagonal and square lattices in the claddings”, Comm. Phys., vol. 35, no. 1, p. 75, Feb. 2025.

Issue

Section

Papers
Received 02-11-2024
Accepted 20-01-2025
Published 03-02-2025

Funding data