Invited review. Bond dissociation enthalpies in benzene derivatives and effect of substituents: an overview of density functional theory (B3LYP) based computational approach
Author affiliations
DOI:
https://doi.org/10.15625/2525-2321.2017-00527Keywords:
Benzene derivatives, density functional theory, bond dissociation enthalpies, substituent effects, radical effect, ground state effect, total effect, Hammett constantsAbstract
In this review, we have mainly focused on the recent computational studies on the bond dissociation enthalpies (BDE) of the X‒H bonds of the para and meta substituted benzene derivatives (3Y-C6H4X‒H and 4Y-C6H4X‒H with X = O, S, Se, NH, PH, CH2, SiH2 and Y = H, F, Cl, CH3, OCH3, NH2, CF3, CN, NO2). In addition, the remote substituent effects on the BDE(X‒H), the radical stability and parent one have also been discussed in terms of the calculated ground state effect, radical effect and total effect. Model chemistry of ROB3LYP/6-311++G(d,p)//B3LYP/6-311G(d,p) can reproduce the BDE values with the accuracy of 1.0‒2.0 kcal/mol. The good linear correlations between Hammett constants and BDE values were discovered for both para and meta substitutions in phenols, thiophenols, benzeneselenols, anilines and phenylposphines with the R-squared lager than 0.94. In contrast, it does not occur in case of toluenes and phenylsilanes.
Keywords. Benzene derivatives, density functional theory, bond dissociation enthalpies, substituent effects, radical effect, ground state effect, total effect, Hammett constants.
Downloads
References
Z. Rappoport. The Chemistry of Phenols, 2 Volume Set: John Wiley & Sons; 2004.
K. Ingold: 60 Years of Research on Free Radical Physical Organic Chemistry. In: The Foundations of Physical Organic Chemistry: Fifty Years of the James Flack Norris Award. ACS Publications, 223-250 (2015).
H. Yuzawa, M. Aoki, H. Itoh, H. Yoshida. Adsorption and photoadsorption states of benzene derivatives on titanium oxide studied by NMR, The Journal of Physical Chemistry Letters, 2(15), 1868-1873 (2011).
S. P. Pogorelova, A. B. Kharitonov, I. Willner, C. N. Sukenik, H. Pizem, T. Bayer. Development of ion-sensitive field-effect transistor-based sensors for benzylphosphonic acids and thiophenols using molecularly imprinted TiO2 films, Analytica chimica acta, 504(1), 113-122 (2004).
R. S. Sengar, V. N. Nemykin, P. Basu. Electronic properties of para-substituted thiophenols and disulfides from 13C NMR spectroscopy and ab initio calculations: relations to the Hammett parameters and atomic charges, New Journal of Chemistry, 27(7), 1115-1123 (2003).
I. E. H.-G. Franck, J. W. Stadelhofer. Production and uses of benzene derivatives. In: Industrial Aromatic Chemistry, Springer, 132-235 (1988).
S. W. Benson. Thermochemical kinetics, Wiley, 1976.
IUPAC. Compendium of Chemical Terminology, 2nd ed. In. Blackwell Scientific Publications, Oxford 1997.
S. J. Blanksby, G. B. Ellison. Bond dissociation energies of organic molecules, Accounts of chemical research, 36(4), 255-263 (2003).
J. H. Wang, D. Domin, B. Austin, D. Y. Zubarev, J. McClean, M. Frenklach, T. A. Cui, W. A. Lester. A Diffusion Monte Carlo Study of the O-H Bond Dissociation of Phenol, Journal of Physical Chemistry A, 114(36), 9832-9835 (2010).
L. A. Curtiss, J. A. Pople. Recent Advances in Computational Thermochemistry and Challenges for the Future. . In: National Research Council (US) Chemical Sciences Roundtable. Impact of Advances in Computing and Communications Technologies on Chemical Science and Technology: Report of a Workshop. Washington (DC). National Academies Press (US), 26-34 (1999).
T. M. Krygowski, B. T. Stepień. Sigma-and pi-electron delocalization: focus on substituent effects, Chemical reviews, 105(10), 3482-3512 (2005).
E. R. Johnson, O. J. Clarkin, G. A. DiLabio. Density Functional Theory Based Model Calculations for Accurate Bond Dissociation Enthalpies. 3. A Single Approach for X−H, X−X, and X−Y (X, Y = C, N, O, S, Halogen) Bonds, The Journal of Physical Chemistry A, 107(46), 9953-9963 (2003).
X. -Q. Yao, X. -J. Hou, H. Jiao, H. -W. Xiang, Y. -W. Li. Accurate calculations of bond dissociation enthalpies with density functional methods, The Journal of Physical Chemistry A, 107(46), 9991-9996 (2003).
Y. -R. Luo. Handbook of bond dissociation energies in organic compounds: CRC press (2002).
J. Kerr. Bond dissociation energies by kinetic methods, Chemical reviews, 66(5), 465-500 (1966).
W. M. Haynes. CRC handbook of chemistry and physics: CRC press (2014).
M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. Petersson. Gaussian 09, Revision A, Gaussian, Inc., Wallingford CT (2009).
L. A. Curtiss, C. Jones, G. W. Trucks, K. Raghavachari, J. A. Pople. Gaussian‐1 theory of molecular energies for second‐row compounds, The Journal of Chemical Physics, 93(4), 2537-2545 (1990).
L. R. Peebles, P. Marshall. High-accuracy coupled-cluster computations of bond dissociation energies in SH, H2S, and H2O, The Journal of Chemical Physics, 117(7), 3132-3138 (2002).
P. Mulder, H.-G. Korth, D.A. Pratt, G.A. DiLabio, L. Valgimigli, G. Pedulli, K. Ingold. Critical re-evaluation of the O−H bond dissociation enthalpy in phenol, The Journal of Physical Chemistry A, 109(11), 2647-2655 (2005).
G. da Silva, C. -C. Chen, J. W. Bozzelli. Bond dissociation energy of the phenol OH bond from ab initio calculations, Chemical Physics Letters, 424(1), 42-45 (2006).
Y. Zhao, D.G. Truhlar, How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals?, The Journal of Physical Chemistry A, 112(6), 1095-1099 (2008).
M. D. Wodrich, C. Corminboeuf, P. R. Schreiner, A.A. Fokin, P.v.R. Schleyer. How accurate are DFT treatments of organic energies?, Organic letters, 9(10), 1851-1854 (2007).
V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew. Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes, The Journal of Chemical Physics, 119(23), 12129-12137 (2003).
R. D. Bach, P. Y. Ayala, H. Schlegel. A reassessment of the bond dissociation energies of peroxides. An ab initio study, Journal of the American Chemical Society, 118(50), 12758-12765 (1996).
C. Baciu, J. W. Gauld. An assessment of theoretical methods for the calculation of accurate structures and SN bond dissociation energies of S-nitrosothiols (RSNOs), The Journal of Physical Chemistry A, 107(46), 9946-9952 (2003).
A. S. Menon, G. P. Wood, D. Moran, L. Radom. Bond dissociation energies and radical stabilization energies: An assessment of contemporary theoretical procedures, The Journal of Physical Chemistry A, 111(51), 13638-13644 (2007).
A. K. Chandra, P. -C. Nam, M. T. Nguyen. The S−H bond dissociation enthalpies and acidities of para and meta substituted thiophenols: a quantum chemical study, The Journal of Physical Chemistry A, 107(43), 9182-9188 (2003).
Y. Feng, L. Liu, J. -T. Wang, H. Huang, Q.-X. Guo. Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies, Journal of chemical information and computer sciences, 43(6), 2005-2013 (2003).
M. -J. Li, L. Liu, Y. Fu, Q. -X. Guo. Development of an ONIOM-G3B3 Method to Accurately Predict C−H and N−H Bond Dissociation Enthalpies of Ribonucleosides and Deoxyribonucleosides, The Journal of Physical Chemistry B, 109(28), 13818-13826 (2005).
X. -Q. Yao, X. -J. Hou, G. -S. Wu, Y. -Y. Xu, H. -W. Xiang, H. Jiao, Y. -W. Li. Estimation of C−C bond dissociation enthalpies of large aromatic hydrocarbon compounds using DFT methods, The Journal of Physical Chemistry A, 106(31), 7184-7189 (2002).
I. Y. Zhang, J. Wu, Y. Luo, X. Xu. Accurate bond dissociation enthalpies by using doubly hybrid XYG3 functional, Journal of computational chemistry, 32(9), 1824-1838 (2011).
M. -J. Li, L. Liu, Y. Fu, Q. -X. Guo. Accurate bond dissociation enthalpies of popular antioxidants predicted by the ONIOM-G3B3 method, Journal of Molecular Structure: THEOCHEM, 815(1), 1-9 (2007).
G. DiLabio, D. Pratt. Density Functional Theory Based Model Calculations for Accurate Bond Dissociation Enthalpies. 2. Studies of X−X and X−Y (X, Y = C, N, O, S, Halogen) Bonds, The Journal of Physical Chemistry A, 104(9), 1938-1943 (2000).
S. L. Khursan. Homodesmotic method of determining the O-H bond dissociation energies in phenols, Kinetics and Catalysis, 57(2), 159-169 (2016).
N. M. Khlestov, A. N. Shendrik. Quantum-chemical DFT calculations of the energies of the O-H bond of phenols, Theoretical and Experimental Chemistry, 46(5), 279-283 (2010).
C. Marteau, R. Guitard, C. Penverne, D. Favier, V. Nardello-Rataj, J. M. Aubry. Boosting effect of ortho-propenyl substituent on the antioxidant activity of natural phenols, Food Chemistry, 196, 418-427 (2016).
M. S. Miranda, J. da Silva, J. F. Liebman. Gas-phase thermochemical properties of some tri-substituted phenols: A density functional theory study, Journal of Chemical Thermodynamics, 80, 65-72 (2015).
C. A. McFerrin, R. W. Hall, B. Dellinger. Ab initio study of the formation and degradation reactions of chlorinated phenols, Journal of Molecular Structure-Theochem, 902(1-3), 5-14 (2009).
J. Shi, S. Liang, Y. S. Feng, H. J. Wang, Q. X. Guo. Heterocyclic analogs of phenol as novel potential antioxidants, Journal of Physical Organic Chemistry, 22(11), 1038-1047 (2009).
H. -J. Wang, Y. Fu. Designing new free-radical reducing reagents: Theoretical study on Si–H bond dissociation energies of organic silanes, Journal of Molecular Structure: THEOCHEM, 893(1), 67-72 (2009).
B. Chan, L. Radom. BDE261: a comprehensive set of high-level theoretical bond dissociation enthalpies, The Journal of Physical Chemistry A, 116(20), 4975-4986 (2012).
P. R. Rablen, J. F. Hartwig. Accurate borane sequential bond dissociation energies by high-level ab initio computational methods, Journal of the American Chemical Society, 118(19), 4648-4653 (1996).
J. Stewart. Reviews in Computational Chemistry, Reviews of Computational Chemistry (1990).
G. DiLabio, D. Pratt, A. LoFaro, J. Wright. Theoretical study of X−H bond energetics (X = C, N, O, S): application to substituent effects, gas phase acidities, and redox potentials, The Journal of Physical Chemistry A, 103(11), 1653-1661 (1999).
A. K. Chandra, T. Uchimaru. The OH bond dissociation energies of substituted phenols and proton affinities of substituted phenoxide ions: A DFT study, International Journal of Molecular Sciences, 3(4), 407-422 (2002).
P. C. Nam, M. T. Nguyen. The Se–H bond of benzeneselenols (ArSe-H): Relationship between bond dissociation enthalpy and spin density of radicals, Chemical Physics, 415, 18-25 (2013).
P. -C. Nam, M. T. Nguyen, A .K. Chandra. Effect of Substituents on the P−H Bond Dissociation Enthalpies of Phenylphosphines and Proton Affinities of Phenylphosphine Anions: A DFT Study, The Journal of Physical Chemistry A, 108(51), 11362-11368 (2004).
P. -C. Nam, M. T. Nguyen, A. K. Chandra. The C− H and α (C−X) Bond Dissociation Enthalpies of Toluene, C6H5-CH2X (X = F, Cl), and Their Substituted Derivatives: A DFT Study, The Journal of Physical Chemistry A, 109(45), 10342-10347 (2005).
P. C. Nam, M. T. Nguyen, A. K. Chandra. Theoretical Study of the Substituent Effects on the S− H Bond Dissociation Energy and Ionization Energy of 3-Pyridinethiol: Prediction of Novel Antioxidant, The Journal of Physical Chemistry A, 110(37), 10904-10911 (2006).
Pham Thi Quynh Ty, P.C. Nam. (RO)B3LYP/6-
++G(2df,2p)//B3LYP/6-311G(d,p): Reliable dft methods for determining bond dissociation enthalpies, Tạp chí Khoa học và Công nghệ đại học Đà Nẵng (2011).
D. Wayner, E. Lusztyk, K. Ingold, P. Mulder. Application of Photoacoustic Calorimetry to the Measurement of the O−H Bond Strength in Vitamin E (α-and δ-Tocopherol) and Related Phenolic Antioxidants1, The Journal of organic chemistry, 61(18), 6430-6433 (1996).
D. Wayner, E. Lusztyk, D. Pagé, K. Ingold, P. Mulder, L. Laarhoven, H. Aldrich. Effects of solvation on the enthalpies of reaction of tert-butoxyl radicals with phenol and on the calculated OH bond strength in phenol, Journal of the American Chemical Society, 117(34), 8737-8744 (1995).
V. F. DeTuri, K. M. Ervin. Proton transfer between Cl− and C6H5OH. OH bond energy of phenol, International Journal of Mass Spectrometry and Ion Processes, 175(1-2), 123-132 (1998).
R. M. Borges dos Santos, J. A. Martinho Simões. Energetics of the O–H bond in phenol and substituted phenols: a critical evaluation of literature data, Journal of Physical and Chemical Reference Data, 27(3), 707-739 (1998).
A. Colussi, F. Zabel, S. Benson. The very low‐pressure pyrolysis of phenyl ethyl ether, phenyl allyl ether, and benzyl methyl ether and the enthalpy of formation of the phenoxy radical, International Journal of Chemical Kinetics, 9(2), 161-178 (1977).
D. J. DeFrees, R. T. McIver Jr, W. J. Hehre. Heats of formation of gaseous free radicals via ion cyclotron double resonance spectroscopy, Journal of the American Chemical Society, 102(10), 3334-3338 (1980).
F. Bordwell, J. P. Cheng, J. A. Harrelson. Homolytic bond dissociation energies in solution from equilibrium acidity and electrochemical data, Journal of the American Chemical Society, 110(4), 1229-1231 (1988).
J. A. Walker, W. Tsang. Single-pulse shock tube studies on the thermal decomposition of n-butyl phenyl ether, n-pentylbenzene, and phenetole and the heat of formation of phenoxy and benzyl radicals, Journal of Physical Chemistry, 94(8), 3324-3327 (1990).
M. Lucarini, P. Pedrielli, G.F. Pedulli, S. Cabiddu, C. Fattuoni. Bond dissociation energies of O−H bonds in substituted phenols from equilibration studies, The Journal of organic chemistry, 61(26), 9259-9263 (1996).
F. G. Bordwell, W. -Z. Liu. Solvent effects on homolytic bond dissociation energies of hydroxylic acids, Journal of the American Chemical Society, 118(44), 10819-10823 (1996).
H. -T. Kim, R. J. Green, J. Qian, S. L. Anderson. Proton transfer in the [phenol-NH3]+ system: An
experimental and ab initio study, The Journal of Chemical Physics, 112(13), 5717-5721 (2000).
L. A. Angel, K. M. Ervin. Competitive threshold collision-induced dissociation: Gas-phase acidity and O−H bond dissociation enthalpy of phenol, The Journal of Physical Chemistry A, 108(40), 8346-8352 (2004).
C. Marteau, R. Guitard, C. Penverne, D. Favier, V.
Nardello-Rataj, J. -M. Aubry. Boosting effect of ortho-propenyl substituent on the antioxidant activity of natural phenols, Food chemistry, 196, 418-427 (2016).
D. Armstrong, Q. Sun, R. Schuler. Reduction Potentials and Kinetics of Electron Transfer Reactions of Phenylthiyl Radicals: Comparisons with Phenoxyl Radicals 1, The Journal of Physical Chemistry, 100(23), 9892-9899 (1996).
D. F. McMillen, D. M. Golden. Hydrocarbon bond dissociation energies, Annual Review of Physical Chemistry, 33(1), 493-532 (1982).
S. Venimadhavan, K. Amarnath, N. G. Harvey, J. P. Cheng, E. M. Arnett. Heterolysis, homolysis, and cleavage energies for the cation radicals of some carbon-sulfur bonds, Journal of the American Chemical Society, 114(1), 221-229 (1992).
E. T. Denisov, T. Denisova: Handbook of antioxidants: bond dissociation energies, rate constants, activation energies, and enthalpies of reactions, vol. 100: CRC press; 1999.
C. F. Correia, R. C. Guedes, R. M. B. dos Santos, B. J. C. Cabral, J. A. M. Simões. O–H Bond dissociation enthalpies in hydroxyphenols. A time-resolved photoacoustic calorimetry and quantum chemistry study, Physical Chemistry Chemical Physics, 6(9), 2109-2118 (2004).
R. M. Borges dos Santos, V. S. Muralha, C. F. Correia, R. C. Guedes, B. J. Costa Cabral, J. A. Martinho Simões. S−H bond dissociation enthalpies in thiophenols: a time-resolved photoacoustic calorimetry and quantum chemistry study, The Journal of Physical Chemistry A, 106(42), 9883-9889 (2002).
Q. Zhu, X. -M. Zhang, A. J. Fry. Bond dissociation
energies of antioxidants, Polymer Degradation and Stability, 57(1), 43-50 (1997).
M. Jonsson, J. Lind, T. E. Eriksen, G. Mereny. Redox and acidity properties of 4-substituted aniline radical cations in water, Journal of the American Chemical Society, 116(4), 1423-1427 (1994).
F. Bordwell, X. M. Zhang, J. P. Cheng. Bond dissociation energies of the nitrogen-hydrogen bonds in anilines and in the corresponding radical anions. Equilibrium acidities of aniline radical cations, The Journal of Organic Chemistry, 58(23), 6410-6416 (1993).
J. R. Gomes, M. D. Ribeiro da Silva, M. A. Ribeiro da Silva. Solvent and Structural Effects in the N−H Bond Homolytic Dissociation Energy, The Journal of Physical Chemistry A, 108(11), 2119-2130 (2004).
F. G. Bordwell, J. Cheng. Substituent effects on the stabilities of phenoxyl radicals and the acidities of phenoxyl radical cations, Journal of the American Chemical Society, 113(5), 1736-1743 (1991).
Z. Li, J. -P. Cheng. A Detailed Investigation of Subsitituent Effects on N−H Bond Enthalpies in Aniline Derivatives and on the Stability of Corresponding N-Centered Radicals, The Journal of organic chemistry, 68(19), 7350-7360 (2003).
C. Hansch, A. Leo, R. Taft. A survey of Hammett substituent constants and resonance and field parameters, Chemical reviews, 91(2), 165-195 (1991).
O. Exner, S. Böhm. Background of the Hammett Equation As Observed for Isolated Molecules: Meta- and Para-Substituted Benzoic Acids, The Journal of Organic Chemistry, 67(18), 6320-6327 (2002).
K.-S. Song, L. Liu, Q. -X. Guo. Remote Substituent Effects on N−X (X = H, F, Cl, CH3, Li) Bond Dissociation Energies in P ara-Substituted Anilines, The Journal of Organic Chemistry, 68(2), 262-266 (2003).
Y. -H. Cheng, X. Zhao, K. -S. Song, L. Liu, Q. -X. Guo. Remote Substituent Effects on Bond Dissociation Energies of Para-Substituted Aromatic Silanes, The Journal of Organic Chemistry, 67(19), 6638-6645 (2002).