A thorough theoretical investigation into complexes formed by interaction of dimethyl sulfoxide with two water molecules
Author affiliations
DOI:
https://doi.org/10.15625/2525-2321.2017-00511Keywords:
Dimethyl sulfoxide, hydrogen bond, cooperativityAbstract
A computational study of the stability and the cooperative effect of hydrogen bonds in the complexes of dimethyl sulfoxide and two water molecules was undertaken at the MP2/6-311++G(2d,2p) level of theory. The cooperative energies of obtained complexes are significantly negative, indicating that there is a large cooperativity between types of hydrogen bonds. The existence of the O−H∙∙∙O hydrogen bond present at dimer of water increases the stability of O−H∙∙∙O and C−H∙∙∙O hydrogen bonds in the ternary complexes compared to relevant binary complexes. By vibrational and NBO analyses, it is found that the magnitude of stretching frequency red shift of O−H bonds in the O−H···O hydrogen bonds is enhanced, whereas the extent of stretching frequency blue shift of C−H bonds in the C−H∙∙∙O hydrogen bonds is weakened when the cooperativity of hydrogen bonds happens in the ternary complexes. Obtained results of AIM analysis and stabilization energies indicate the larger contribution of the O−H∙∙∙O relative to the C−H∙∙∙O hydrogen bond to cooperativity.
Keywords. Dimethyl sulfoxide, hydrogen bond, cooperativity.Downloads
References
G. Chalasinski, M. M. Szczesniak. State of the art and challenges of the ab initio theory of intermolecular interactions, Chem. Rev., 100(1), 4227-4252 (2000).
R. W. Saalfrank, H. Maid, A. Scheurer. Upramolekulare koordinationschemie-synergie von zufallsentdeckung und rationalem design, Angew. Chem. Int. Ed., 47, 8794-8824 (2008).
J. -M. Lehn. Supramolecular chemistry, Weinheim: Verlag-Chemie (1995).
S. J. Grabowski, Hydrogen bonding–New insights, In J. Leszczynski (Ed.), Series challenges and advances in computational chemistry and physics, New York, NY: Springer (2006).
N. T. Trung, N. P. Hung, T. T. Hue and M. T. Nguyen. Existence of both blue-shifting hydrogen bond and Lewis acid-base interaction in the complexes of carbonyls and thiocarbonyls with carbon dioxide, Phys. Chem. Chem. Phys., 13, 14033-14042 (2011).
N. T. H. Man, P. L. Nhan, V. Vien, D. T. Quang, N. T. Trung. An insight into C−H•••N hydrogen bond and stability of the complexes formed by trihalomethanes with ammonia and its monohalogenated derivatives, Int. J. Quantum Chem., 117(e25338), 1-9 (2017).
S. Nonin, J. L. Leroy, M. Gueron. Terminal base pairs of oligodeoxynucleotides: Imino proton exchange and fraying, Biochemistry, 34, 10652-10659 (1995).
P. N. Taylor, H. L. Anderson. Cooperative self-assembly of double-strand conjugated porphyrin ladders, J. Am. Chem. Soc., 121, 11538-11545 (1999).
J. Vieceli, I. Benjamin. Selective adsorption of DMSO from an aqueous solution at the surface of self-assembled monolayers, Langmuir, 19, 5383-5388 (2003).
E. Reverchon, I. De Marco. Supercritical antisolvent micronization of Cefonicid: thermodynamic interpretation of results, J. Supercrit. Fluids, 31(2), 207-215 (2004).
A. Weber, L.V. Yelash, T. Kraska. Effect of the phase behaviour of the solvent–antisolvent systems on the gas–antisolvent-crystallisation of paracetamol, J. Supercrit. Fluids, 33, 107-113 (2005).
B. Kirchner, M. Reiher. The secret of dimethyl sulfoxide-water mixtures. A quantum chemical study of 1DMSO-nwater clusters, J. Am. Chem. Soc., 124, 6206-6215 (2002).
Q. Li, X. An, B. Gong, J. Cheng. Cooperativity between O−H∙∙∙O and C−H∙∙∙O hydrogen bonds involving dimethyl sulfoxide-H2O-H2O complex, J. Phys Chem. A, 111, 10166-10169 (2007).
Q. Li, X. An, B. Gong, J. Cheng. Spectroscopic and theoretical evidence for the cooperativity between red-shift hydrogen bond and blue-shift hydrogen bond in DMSO aqueous solutions, Spectrochim Acta A, 69, 211-215 (2008).
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Pople, Gaussian 09 (Revision B.01), Wallingford, CT: Gaussian Inc (2009).
W. J. F. Bader. A quantum theory of molecular structure and its applications, Chem. ReV., 91, 893-928 (1991).
E. Espinosa, E. Molins, C. Lecomte. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities, Chem. Phys. Lett., 285, 170-173 (1998).
E. D. Glendening, J. Badenhoop, K. A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold. GenNBO 5.G, Theoretical Chemistry Institute, University of Wisconsin: Madison, WI (2001).