Ảnh hưởng đồng thời của cacbon hữu cơ hòa tan, chất hoạt động bề mặt và natri oxalat đến sự giải hấp thuốc trừ sâu
Author affiliations
DOI:
https://doi.org/10.15625/0866-7144.2017-00411Keywords:
esponse surface methodology, modeling, fenobucarb, dissolve organic carbon, surfactantAbstract
This study investigated the effect of dissolved organic carbon (DOC), sodium dodecyl sulfate (SDS) and sodium oxalate (OXa) on desorption of endosulfan and dichlorodiphenyltrichloroethane (DDT) from soil in to water. The individual and interaction effects of three control parameters (DOC, SDS and OXa) on concentration of pesticides desorption was estimated by central composite rotatable design. Quadratic regression equations of response function (pesticides desorption) and variables were estimated. Statistical significant of models were confirm by square regression coefficient R2 which are 0.976 and 0.984 for endosulfan and DDT, respectively, adjusted square regression coefficient (R2adj) are 0.952 và 0.972 for endosulfan and DDT, respectively, it indicated that model fit to experiment data. Effects of independent variables DOC, SDS and Oxa on regression desorption concentrations pesticides were linear throughout regression coefficients at linear.
Keywords. Response surface methodology, modeling, fenobucarb, dissolve organic carbon, surfactant.
Downloads
References
UNEP-chemicals. Stockholm Convention on Persistent Organic Pollutants, United Nation Environment Programme, http://www.pops.int/. (2004).
S. Tao, L. Q. Guo, X. J. Wang, W. X. Liu, T. Z. Ju, R. Dawson. Use of sequential ASE extraction to evaluate the bioavailability of DDT and its metabolites to wheat roots in soils with various organic carbon contents, Sci. Total Environ., 320(1), 1-9 (2004).
X. Wang, D. Wang, X. Qin, X. Xu. Residues of organochlorine pesticides in surface soils from college school yards in Beijing, China, Journal of Environmental Sciences, 20(9), 1090-6 (2008).
H. Nakata, Y. Hirakawa, M. Kawazoe, T. Nakabo, K. Arizono, S. I. Abe. Concentrations and compositions of organochlorine contaminants in sediments, soils, crustaceans, fishes and birds collected from Lake Tai, Hangzhou Bay and Shanghai city region, China, Environmental Pollution, 133(3), 415-29 (2005).
A. O. Barakat. Assessment of persistent toxic substances in the environment of Egypt, Environment International, 30(3), 309-22 (2004).
P. M. Hoai, Z. Sebesvari, T. B. Minh, P. H. Viet, F. G. Renaud. Pesticide pollution in agricultural areas of Northern Vietnam: Case study in Hoang Liet and Minh Dai communes, Environmental Pollution. 159(12), 3344-50 (2011).
A. O. Barakat, A. Mostafa, T. L. Wade, S. T. Sweet, N. B. Sayed. Assessment of persistent organochlorine pollutants in sediments from Lake Manzala, Egypt, Mar. Pollut. Bull., 64(8), 1713-20 (2012).
J. C. White, M. I. Mattina, W. Y. Lee, B. D. Eitzer, W. Iannucci-Berger. Role of organic acids in enhancing the desorption and uptake of weathered p,p′-DDE by Cucurbita pepo, Environmental Pollution, 124(1), 71-80 (2003).
L. Luo, S. Zhang, X. Q. Shan, Y. G. Zhu. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils, Chemosphere, 63(8), 1273-9 (2006).
P. Wang, A. A. Keller. Particle-Size Dependent Sorption and Desorption of Pesticides within a Water-Soil-Nonionic Surfactant System, Environmental Science & Technology, 42(9), 3381-7 (2008).
K. Y. Cheng, J. W. C. Wong. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil–water system. Chemosphere, 62(11), 1907-16 (2006).
M. Gonzalez, K. S. Miglioranza, J. E. Aizpun, F. I. Isla, A. Pena. Assessing pesticide leaching and desorption in soils with different agricultural activities from Argentina (Pampa and Patagonia), Chemosphere, 81(3), 351-8 (2010).
P. Mukerjee, K. J. Mysels. Critical Micelle. Concentration of Aqueous Surfactant Systems, NSRDS-NBS 36 US Government Printing Office, Washington, DC (1971).
B. W. Strobel, H. C. B. Hansen, O. K. Borggaard, M. K. Andersen, K. Raulund-Rasmussen. Cadmium and copper release kinetics in relation to afforestation of cultivated soil, Geochimica et Cosmochimica Acta, 65(8), 1233-42 (2001).
B. B. Neto, I. S. Scarminio, R. E. Bruns. Chapter 6 Exploring the response surface. In: R.E. Bruns ISS, Neto BdB, editors, Data Handling in Science and Technology, 25, 245-312 (2005).
K. Kadokami, K. Tanada, K. Taneda, K. Nakagawa. Novel gas chromatography–mass spectrometry database for automatic identification and quantification of micropollutants, Journal of Chromatography A, 1089(1-2), 219-26 (2005).
Neto BB, Scarminio IS, Bruns RE. Chapter 5 Empirical Model-building. In: R. E. Bruns ISS, Neto BdB, editors, Data Handling in Science and Technology, 25, 199-244 (2005).
D. G. Jones. Piperonyl Butoxide. London: Academic Press, 317-23 (1999).
J. Luo, M. Ma, C. Liu, J. Zha, Z. Wang. Impacts of particulate organic carbon and dissolved organic carbon on removal of polycyclic aromatic hydrocarbons, organochlorine pesticides, and nonylphenols in a wetland, Journal of Soils and Sediments, 9(3), 180-7 (2009).
E. Maillard, S. Payraudeau, E. Faivre, C. Gregoire, S. Gangloff, G. Imfeld. Removal of pesticide mixtures in a stormwater wetland collecting runoff from a vineyard catchment, The Science of the total environment, 409(11), 2317-24 (2011).
L. Luo, S. Zhang, X. Q. Shan, Y. G. Zhu. Oxalate and root exudates enhance the desorption of p,p′-DDT from soils, Chemosphere, 63(8), 1273-9 (2006).
D. E. Kile, C. T. Chiou. Water solubility enhancements of DDT and trichlorobenzene by some surfactants below and above the critical micelle concentration, Environmental Science & Technology, 23(7), 832-8 (1989).