Structure optimization of large-solid-core photonic crystal fibers based on Ge\(_{20}\)Sb\(_{5}\)Se\(_{75}\) for optical applications

Ngoc Vo Thi Minh, Danh Nguyen Thanh, An Nguyen Manh, Tham Tran Hong, Van Thuy Hoang, Lanh Chu Van, Hieu Van Le
Author affiliations

Authors

  • Ngoc Vo Thi Minh Department of Physics, Vinh University, 182 Le Duan, Vinh City, Vietnam
  • Danh Nguyen Thanh A Sanh High School, Gia Lai Province, Viet Nam
  • An Nguyen Manh Faculty of Technology and Engineering, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
  • Tham Tran Hong Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam https://orcid.org/0009-0004-7360-8778
  • Van Thuy Hoang Department of Physics, Vinh University, 182 Le Duan, Vinh City, Vietnam https://orcid.org/0000-0003-0056-2321
  • Lanh Chu Van Department of Physics, Vinh University, 182 Le Duan, Vinh City, Vietnam https://orcid.org/0000-0001-7738-6720
  • Hieu Van Le Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/18883

Keywords:

Photonic crystal fiber (PCF), dispersion characteristics, square lattice, chalcogenide, Ge20Sb5Se75, effective mode area, confinement loss.

Abstract

This paper presents a new design of Ge20Sb5Se75 large-solid-core photonic crystal fiber (PCF) with a 1st-ring-removed square lattice. Using the full vector finite element method for anisotropic perfectly matched layers, we numerically examine the dispersion characteristics of the PCF in the wavelength range spanning from 1.5 µm to 6.0 µm. The results reveal that photonic crystal fibers exhibit a variety of dispersion properties, including all-normal and anomalous dispersion, featuring one or two zero dispersion wavelengths (ZDWs). We propose two designs with optimal dispersion characteristics based on our numerical simulations. These designs have small lattice constants (Ʌ = 1.0 µm; Ʌ = 1.5 µm) and low fill factors (d/Ʌ = 0.3; d/Ʌ = 0.35). Furthermore, these selected fibers offer high nonlinearity and low confinement loss, making them excellent candidates for a wide range of optical applications.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

J.C. Knight, T.A. Birks, P.St.J. Russell, D.M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996) 1547-1549. DOI: https://doi.org/10.1364/OL.21.001547

W. J. Wadsworth et al., Very high numerical aperture fibers, IEEE Photon. Technol. Lett. 16 (2004) 843-845. DOI: https://doi.org/10.1109/LPT.2004.823689

T. Schreiber et al., Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity, Opt. Express 13 (2005) 7621-7630. DOI: https://doi.org/10.1364/OPEX.13.007621

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, J. P. Sandro, Large mode area photonic crystal fibre, Electron. Lett. 34 (1998) 1347-1348. DOI: https://doi.org/10.1049/el:19980965

P. Wan, L. M. Yang, J. Liu, All fiber-based Yb-doped high energy, high power femtosecond fiber lasers, Opt. Express 21 (2013) 29854-29859. DOI: https://doi.org/10.1364/OE.21.029854

M. S. Ibrahim et al., Terahertz photonic crystal fiber for sensing the creatinine level in the blood, Opt. Quantum Electron." 55 (2023) 767. DOI: https://doi.org/10.1007/s11082-023-04966-8

P. D. Rasmussen, J. Lægsgaard, O. Bang, Chromatic dispersion of liquid-crystal infiltrated capillary tubes and photonic crystal, J. Opt. Soc. Am. B, 23 (2006) 2241-2248. DOI: https://doi.org/10.1364/JOSAB.23.002241

L. C. Van et al., Supercontinuum generation in highly birefringent fiber infiltrated with carbon disulfide, Opt. Fiber Technol. 75 (2022) 103151. DOI: https://doi.org/10.1016/j.yofte.2022.103151

L. C. Van et al., Broadband supercontinuum generation in cascaded tapered liquid core fiber, Optics Communications, 537 (2023) 129441. DOI: https://doi.org/10.1016/j.optcom.2023.129441

V.T. Hoang et al., Optimizing supercontinuum spectro-temporal properties by leveraging machine learning towards multi-photon microscopy, Front. Photon. 3 (2022) 940902. DOI: https://doi.org/10.3389/fphot.2022.940902

A. Ghanbari et al., Supercontinuum generation for optical coherence tomography using magnesium fluoride photonic crystal fiber, Optik 140 (2017) 545-554. DOI: https://doi.org/10.1016/j.ijleo.2017.04.099

J. T. Woodward et al., Supercontinuum Sources for. Metrology, Metrologia 46 (2009) 277-282. DOI: https://doi.org/10.1088/0026-1394/46/4/S27

I. Zorin et al., Sensitivity-Enhanced Fourier Transform Mid-Infrared Spectroscopy Using a Supercontinuum Laser Source, Appl. Spectrosc. 74 (2020) 485-493. DOI: https://doi.org/10.1177/0003702819893364

A. Medjouri, A.M. Simohamed, O. Ziane, A. Boudrioua, Analysis of a New Circular Photonic Crystal Fiber with Large Mode Area, Optik 126 (2015) 5718-5724. DOI: https://doi.org/10.1016/j.ijleo.2015.09.035

N. V. T. Minh et al., Supercontinuum generation in a square-lattice photonic crystal fiber using carbon disulfide infiltration, Optik 286 (2023) 171049. DOI: https://doi.org/10.1016/j.ijleo.2023.171049

B. T. L. Tran et al., Analysis of dispersion characteristics of solid-core PCFs with different types of lattice in the claddings, infiltrated with ethanol, Photon. Lett. Poland 12 (2020) 106-108. DOI: https://doi.org/10.4302/plp.v12i4.1054

L. C. Van et al., Comparison of supercontinuum spectrum generating by hollow-core PCFs filled with different lattice types, Opt. Quantum Electron. 54 (2022) 54:300. DOI: https://doi.org/10.1007/s11082-022-03667-y

W. S. Wong, X. Peng, J. M. McLaughlin, L. Dong, Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers, Opt. Lett. 30 (2005) 2855–2857. DOI: https://doi.org/10.1364/OL.30.002855

Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson, Ytterbium-doped large-core fibre laser with 1 kW of continuous-wave output power, Electron. Lett. 40 (2004) 470-472. DOI: https://doi.org/10.1049/el:20040298

H. L. Van et al., Silica-based photonic crystal fiber infiltrated with 1, 2-dibromoethane for supercontinuum generation, Applied Optics 60 (2021) 7268-7278. DOI: https://doi.org/10.1364/AO.430843

N. Sharma, S. Sharda, V. Sharma, P. Sharma, Far-infrared investigation of ternary Ge–Se–Sb and quaternary Ge–Se–Sb–Te chalcogenide glasses, J. Non-Cryst. Solids, 375 (2013) 114-118. DOI: https://doi.org/10.1016/j.jnoncrysol.2013.04.065

L. C. Van et al., Multi-octave supercontinuum generation in As2Se3 chalcogenide photonic crystal fiber, Photon. Nanostruct. Fundam. Appl. 48 (2022) 00093-00114. DOI: https://doi.org/10.1016/j.photonics.2021.100986

L. C. Van et al., Modeling of lead-bismuth gallate glass ultra-flatted normal dispersion photonic crystal fiber infiltrated with tetrachloroethylene for high coherence mid-infrared supercontinuum generation, Laser Phys. 32 (2022) 055102-055114. DOI: https://doi.org/10.1088/1555-6611/ac599b

A. B. Seddon, Chalcogenide glasses: A review of their preparation, properties and applications, J. Non-Cryst. Solids 184 (1995) 44–50. DOI: https://doi.org/10.1016/0022-3093(94)00686-5

W. H. Wei, L. Fang, X. Shen, and R. P. Wang, Transition threshold in GexSb10Se90−x glasses, J. Appl. Phys. 115 (2014) 113510. DOI: https://doi.org/10.1063/1.4869260

D. Jayasuriya et al., Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber, Opt. Mater. Express. 9 (2019) 2617-2629. DOI: https://doi.org/10.1364/OME.9.002617

Nan Mi et al., Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers, J. Non-Cryst. Solids 464 (2017) 44-50. DOI: https://doi.org/10.1016/j.jnoncrysol.2017.03.025

J. A. Savage, P. J. Webber, and A. M. Pitt, An assessment of Ge-Sb-Se glasses as 8 to 12µm infra-red optical materials, J. Mater. Sci. 13 (1978) 859-864. DOI: https://doi.org/10.1007/BF00570524

A. R. Hilton and D. J. Hayes, The interdependence of physical parameters for infrared transmitting glasses, J. Non-Cryst. Solids 17 (1975) 339–348. DOI: https://doi.org/10.1016/0022-3093(75)90124-6

V. T .M. Ngoc, T. V. Thanh, C. T. H. Sam, L.V. Hieu, C. V. Lanh, Optimization of optical properties of Ge20Sb5Se75-based photonic crystal fibers, Vinh Univ. J. Sci. 51 (2022) 12-21. DOI: https://doi.org/10.56824/vujs.2022nt16

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, Infrared transmission in Ge-Sb-Se glasses, J. Electron. Mater 4 (1975) 347–362. DOI: https://doi.org/10.1007/BF02655410

D. V. Trong, L. T . B Tran, H . T. A Thu, N . T .Thuy, C. V. Lanh, Study on dispersion characteristics of square solid-core photonic crystal fibers with As2S3 substrate, Vinh Univ. J. Sci. 51 (2022) 44-51. DOI: https://doi.org/10.56824/vujs.2022nt5

L.T.B Tran, D.V. Trong, N.T.Thuy, C.V. Lanh, Nonlinear characteristics of square solid-core photonic crystal fibers with various lattice parameters in the cladding, Dalat Univ. J. Sci. 13 (2023) 3-15. DOI: https://doi.org/10.37569/DalatUniversity.13.1.1017(2023)

Downloads

Published

21-12-2023

How to Cite

[1]
Ngoc Vo Thi Minh, Danh Nguyen Thanh, An Nguyen Manh, Tham Tran Hong, Van Thuy Hoang, Lanh Chu Van and V. H. Le, Structure optimization of large-solid-core photonic crystal fibers based on Ge\(_{20}\)Sb\(_{5}\)Se\(_{75}\) for optical applications, Comm. Phys. 33 (2023) 411. DOI: https://doi.org/10.15625/0868-3166/18883.

Issue

Section

Papers
Received 12-09-2023
Accepted 29-11-2023
Published 21-12-2023