Forthcoming

Optical properties of photonic crystal fibers made from Ge23Sb7S70 chalcogenide

Van Hieu Le, Tham Tran Hong, Khanh To Gia, Tu Nguyen Ba, Thao Nguyen Thi, Dung Nguyen Thi, Bien Chu Van, Hue Thi Nguyen, An Nguyen Manh, Thuy Van Hoang
Author affiliations

Authors

  • Van Hieu Le
  • Tham Tran Hong Department of Physics, Vinh University, 182 Le Duan, Vinh City, Vietnam https://orcid.org/0009-0004-7360-8778
  • Khanh To Gia Lam Son High School for the Gifted https://orcid.org/0009-0009-5553-1195
  • Tu Nguyen Ba Lam Son High School for the Gifted
  • Thao Nguyen Thi Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City
  • Dung Nguyen Thi Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City
  • Bien Chu Van Yersin Da Lat University, 27 Ton That Tung, Ward 8, Da Lat City, Vietnam
  • Hue Thi Nguyen Faculty of Natural Sciences, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City
  • An Nguyen Manh Faculty of Engineering, Technology, and Communication, Hong Duc University, 565 Quang Trung Street, Thanh Hoa City, Vietnam
  • Thuy Van Hoang Department of Physics, Vinh University, 182 Le Duan, Vinh City, Vietnam

DOI:

https://doi.org/10.15625/0868-3166/23058

Keywords:

Photonic crystal fiber, chalcogenide, mid-infrared, dispersion characteristics

Abstract

In this paper, we investigate a photonic crystal fiber (PCF) of Ge23Sb7S70 chalcogenide with five air-hole rings arranged in a regular hexagonal lattice. Using simulations and numerical analyses, we investigated the influence of structural parameters on the optical properties of the PCF. The results show that controlling the lattice constant (Λ) and the filling factor (f = d/Λ) in the cladding allows precise tuning of the dispersion and confinement loss properties over a wide wavelength range. Furthermore, we propose two optimized structures, #F1 (Λ = 2.0 μm, f = 0.35) and # F2 (Λ = 3.0 μm, f = 0.35), which are designed to operate in the all-normal dispersion region and the anomalous dispersion region, respectively, making them promising candidates for super-continuum generation applications.

Downloads

Download data is not yet available.

References

[1] J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996) 1547.

[2] P. Wan, L.M. Yang and J. Liu, All fiber-based yb-doped high energy, high power femtosecond fiber lasers, Opt. Express 21 (2013) 29854.

[3] M. S. S. Ibrahim, M. S. M. Esmail, M. Tarek, A. Soliman, M. F. O. Hameed and S. Obayya, Terahertz photonic crystal fiber for sensing the creatinine level in the blood, Opt. Quantum Electron. 55 (2023) 767.

[4] P. D. Rasmussen, J. Lægsgaard and O. Bang, Chromatic dispersion of liquid-crystal infiltrated capillary tubes and photonic crystal fibers, J. Opt. Soc. Am. B 23 (2006) 2241.

[5] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man and P. S. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J. Opt. Soc. Am. B 19 (2002) 2148.

[6] S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang and S. R. Keiding, IR microscopy utilizing intense supercontinuum light source, Opt. Express 20 (2012) 4887.

[7] K. Ke, C. Xia, M. N. Islam, M. J. Welsh and M. J. Freeman, Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser, Opt. Express 17 (2009) 12627.

[8] C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd et al., Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett. 43 (2018) 999.

[9] R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic et al., Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass, Laser Phys. Lett. 8 (2011) 443.

[10] K. D. Xuan, L. C. Van, Q. H. Dinh, L. V. Xuan, M. Trippenbach and R. Buczynski, Dispersion characteristics of a suspended-core optical fiber infiltrated with water, Appl. Opt. 56 (2017) 1012.

[11] Y. N. Billeh, M. Liu and T. Buma, Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source, Opt. Express 18 (2010) 18519.

[12] P. Ray, Hyperspectral long-distance metrology using a femtosecond laser supercontinuum, Doctoral dissertation, ETH Zurich (2024).

[13] M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier et al., Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers, Opt. Express 18 (2010) 4547.

[14] D. Lezal, Chalcogenide glasses - survey and progress, J. Optoelectron. Adv. Mater. 5 (2003) 23.

[15] D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li et al., Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy, Opt. Lett. 36 (2011) 1122.

[16] T. N. Thi, Design and modeling of the nonlinear properties of octagonal lattice Ge₂₀Sb₅Se₇₅ photonic crystal fibers, Sci. Technol. Dev. J. 26 (2023) 3035.

[17] B. J. Eggleton, B. Luther-Davies and K. Richardson, Chalcogenide photonics, Nature Photonics 5 (2011) 141.

[18] Z. U. Borisova, Glassy Semiconductors, Springer, New York, 1981.

[19] J. W. Choi, Z. Han, B. U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling et al., Nonlinear characterization of GeSbS chalcogenide glass waveguides, Sci. Rep. 6 (2016), 39234.

[20] G. F. C. Gonzalez, M. Malinowski, A. Honardoost and S. Fathpour, Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third-and second-order optical nonlinearities, Appl. Opt. 58 (2019) D1.

[21] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Elsevier, New York, 2013.

[22] K. Ahmed, M. S. Islam and B. K. Paul, Design and numerical analysis: Effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications, Karbala Int. J. Mod. Sci. 3 (2017) 29.

Published

09-12-2025

How to Cite

[1]V. H. Le, “Optical properties of photonic crystal fibers made from Ge23Sb7S70 chalcogenide”, Comm. Phys., vol. 36, no. 1, Dec. 2025.

Issue

Section

Papers

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.