Optical properties of photonic crystal fibers made from Ge23Sb7S70 chalcogenide
Author affiliations
DOI:
https://doi.org/10.15625/0868-3166/23058Keywords:
Photonic crystal fiber, chalcogenide, mid-infrared, dispersion characteristicsAbstract
In this paper, we investigate a photonic crystal fiber (PCF) of Ge23Sb7S70 chalcogenide with five air-hole rings arranged in a regular hexagonal lattice. Using simulations and numerical analyses, we investigated the influence of structural parameters on the optical properties of the PCF. The results show that controlling the lattice constant (Λ) and the filling factor (f = d/Λ) in the cladding allows precise tuning of the dispersion and confinement loss properties over a wide wavelength range. Furthermore, we propose two optimized structures, #F1 (Λ = 2.0 μm, f = 0.35) and # F2 (Λ = 3.0 μm, f = 0.35), which are designed to operate in the all-normal dispersion region and the anomalous dispersion region, respectively, making them promising candidates for super-continuum generation applications.
Downloads
References
[1] J. C. Knight, T. A. Birks, P. S. J. Russell and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding, Opt. Lett. 21 (1996) 1547.
[2] P. Wan, L.M. Yang and J. Liu, All fiber-based yb-doped high energy, high power femtosecond fiber lasers, Opt. Express 21 (2013) 29854.
[3] M. S. S. Ibrahim, M. S. M. Esmail, M. Tarek, A. Soliman, M. F. O. Hameed and S. Obayya, Terahertz photonic crystal fiber for sensing the creatinine level in the blood, Opt. Quantum Electron. 55 (2023) 767.
[4] P. D. Rasmussen, J. Lægsgaard and O. Bang, Chromatic dispersion of liquid-crystal infiltrated capillary tubes and photonic crystal fibers, J. Opt. Soc. Am. B 23 (2006) 2241.
[5] W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man and P. S. J. Russell, Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source, J. Opt. Soc. Am. B 19 (2002) 2148.
[6] S. Dupont, C. Petersen, J. Thøgersen, C. Agger, O. Bang and S. R. Keiding, IR microscopy utilizing intense supercontinuum light source, Opt. Express 20 (2012) 4887.
[7] K. Ke, C. Xia, M. N. Islam, M. J. Welsh and M. J. Freeman, Mid-infrared absorption spectroscopy and differential damage in vitro between lipids and proteins by an all-fiber-integrated supercontinuum laser, Opt. Express 17 (2009) 12627.
[8] C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd et al., Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source, Opt. Lett. 43 (2018) 999.
[9] R. Buczynski, D. Pysz, R. Stepien, A. J. Waddie, I. Kujawa, R. Kasztelanic et al., Supercontinuum generation in photonic crystal fibers with nanoporous core made of soft glass, Laser Phys. Lett. 8 (2011) 443.
[10] K. D. Xuan, L. C. Van, Q. H. Dinh, L. V. Xuan, M. Trippenbach and R. Buczynski, Dispersion characteristics of a suspended-core optical fiber infiltrated with water, Appl. Opt. 56 (2017) 1012.
[11] Y. N. Billeh, M. Liu and T. Buma, Spectroscopic photoacoustic microscopy using a photonic crystal fiber supercontinuum source, Opt. Express 18 (2010) 18519.
[12] P. Ray, Hyperspectral long-distance metrology using a femtosecond laser supercontinuum, Doctoral dissertation, ETH Zurich (2024).
[13] M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier et al., Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers, Opt. Express 18 (2010) 4547.
[14] D. Lezal, Chalcogenide glasses - survey and progress, J. Optoelectron. Adv. Mater. 5 (2003) 23.
[15] D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li et al., Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy, Opt. Lett. 36 (2011) 1122.
[16] T. N. Thi, Design and modeling of the nonlinear properties of octagonal lattice Ge₂₀Sb₅Se₇₅ photonic crystal fibers, Sci. Technol. Dev. J. 26 (2023) 3035.
[17] B. J. Eggleton, B. Luther-Davies and K. Richardson, Chalcogenide photonics, Nature Photonics 5 (2011) 141.
[18] Z. U. Borisova, Glassy Semiconductors, Springer, New York, 1981.
[19] J. W. Choi, Z. Han, B. U. Sohn, G. F. Chen, C. Smith, L. C. Kimerling et al., Nonlinear characterization of GeSbS chalcogenide glass waveguides, Sci. Rep. 6 (2016), 39234.
[20] G. F. C. Gonzalez, M. Malinowski, A. Honardoost and S. Fathpour, Design of a hybrid chalcogenide-glass on lithium-niobate waveguide structure for high-performance cascaded third-and second-order optical nonlinearities, Appl. Opt. 58 (2019) D1.
[21] G. P. Agrawal, Nonlinear Fiber Optics, Academic Press, Elsevier, New York, 2013.
[22] K. Ahmed, M. S. Islam and B. K. Paul, Design and numerical analysis: Effect of core and cladding area on hybrid hexagonal microstructure optical fiber in environment pollution sensing applications, Karbala Int. J. Mod. Sci. 3 (2017) 29.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Communications in Physics

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Communications in Physics is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright on any research article published in Communications in Physics is retained by the respective author(s), without restrictions. Authors grant VAST Journals System (VJS) a license to publish the article and identify itself as the original publisher. Upon author(s) by giving permission to Communications in Physics either via Communications in Physics portal or other channel to publish their research work in Communications in Physics agrees to all the terms and conditions of https://creativecommons.org/licenses/by-sa/4.0/ License and terms & condition set by VJS.


